Description Usage Arguments Value References Examples
This function takes inferential results from Infer and computes predictive statistics on a validation data set. These include RMS, PMCC, CR1 and CR2 as defined in Sahu and Mardia (2005), and the Mahalanobis distance Mahalanobis, the eigenvalue errors DE and the pivoted Cholesky errors DPC as described in Bastos and O'Hagan (2009).
1 2 3 4 5 6 7 |
Results |
a list generated by the function |
G |
an object of class |
sim_obs |
if set to |
A data frame with the predictive statistics as described above.
Sahu, S. K., & Mardia, K. V. (2005). A Bayesian kriged Kalman model for short-term forecasting of air pollution levels. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(1), 223-244. Bastos, L. S. and O'Hagan, A. (2008). Diagnostics for Gaussian process emulators. Technometrics 51, 425-438.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | require(Matrix)
data(icesat)
data(surf_fe)
## First create observation object
icesat_obs <- Obs(df=icesat,
abs_lim = 5,
avr_method = "median",
box_size=100,
name="icesat")
## Now split into a training/validation set
split_data <- split_validation(icesat_obs,sample=500,common=0, t==2)
icesat_validation <- split_data$O_val
icesat_training <- split_data$O_pruned
## Now create GMRF defined over some FE basis
Mesh <- initFEbasis(p=surf_fe$p,
t=surf_fe$t,
M=surf_fe$M,
K=surf_fe$K)
mu <- matrix(0,nrow(Mesh),1)
Q <- sparseMatrix(i=1:nrow(surf_fe$p), j = 1:nrow(surf_fe$p), x = 1)
my_GMRF <- GMRF(mu = mu, Q = Q,name="SURF",t_axis = 0:6)
SURF <-GMRF_basis(G = my_GMRF, Basis = Mesh)
L1 <- link(SURF,icesat_training)
e <- link_list(list(L1))
v <- block_list(list(O = icesat_training, G = SURF))
G <- new("Graph",e=e,v=v)
G_reduced <- compress(G)
Results <- Infer(G_reduced)
## Now we validate the results with icesat
L1 <- link(SURF,icesat_validation)
e <- link_list(list(L1))
v <- block_list(list(G1=SURF,O1=icesat_validation))
G <- Graph(e=e,v=v)
G_reduced <- compress(G)
val_results <- validate(Results,G_reduced,sim_obs=F)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.