R/compare_RT_CDF.R

Defines functions compare_RT_CDF

Documented in compare_RT_CDF

#### compare_RT_CDF.R Wu Lab, Johns Hopkins University Author: Xiaona Tang
#### Date: Sep 20, 2017

## compare_RT_CDF-methods
##' @name compare_RT_CDF
##' @aliases compare_RT_CDF
##' @title Compare Residence time/Survival Curve (1-CDF)
##' @rdname compare_RT_CDF-methods
##' @docType methods
##' @description Compare Residence time/Survival Curve of multiple trackll. 
##' Or simply plot the survival curve of one trackll.
##'
##' @usage
##'
##' compare_RT_CDF(trackll=NULL,x.max=30,
##' filter=c(min=3,max=Inf),t.interval=0.5,output=FALSE)
##'
##' @param trackll trajectory list generated by createTrackll() and processing.
##' if NULL, user will be prompted to enter the trackll name.
##' @param x.max The maximum range of X axis, i.e. time, for the output plot.
##' Default 30 sec.
##' @param filter Filter the tracks by step/frame number (length). Only tracks
##' pass through filter will be selected.
##' @param t.interval time interval for image aquisition. Default 0.5 sec.
##' @param output An Logical indicate if output should be generated. See Values
##' for detail.
##' @return
##' \itemize{
##' \item{csv:} 1-CDF of track lengths and time intervals output in .csv 
##' format, when output = TRUE.
##' \item{Plot:} 1-CDF of track lengths of each input trackll will be plotted
##' together in one plot.
##' }
##' @details Compare Residence time/Survival Curve of multiple track list 
##' (trackll). Or simply plot the survival curve of one trackll. 
##' The survival curve/probability is calculated as 1-CDF of the length 
##' of tracks/trajectories.
##'
##' If the acquisition time interval of the tracklls are different, set 
##' argument trackll=NULL, users will be prompted to input the number of the 
##' track list (trackll) to compare/plot.
##' Then users will be prompted to input the name and acquisition time interval
##' of each trackll. The trackll should be masked and merged. The maximum time 
##' range to be plotted can be set using x.max, this will not change the 
##' curve/probabiltiy, which is determined by all track information 
##' in the trackll. 

##'
##' @examples
##'
##' # Generate trackll, and process, 
##' # e.g. mask region of interest, merge tracks from multiple files.
##' folder1=system.file('extdata','HSF',package='sojourner')
##' trackll1=createTrackll(folder1,input=3, cores = 2)
##' trackll1=maskTracks(folder1,trackll1)
##' trackll1=mergeTracks(folder1,trackll1)
##' 
##' folder2=system.file('extdata','HSF_2',package='sojourner')
##' trackll2=createTrackll(folder2,input=2, cores = 2)
##' trackll2=maskTracks(folder2,trackll2)
##' trackll2=mergeTracks(folder2,trackll2)
##'
##' # Plot and output the survival curve,
##' compare_RT_CDF(trackll=c(trackll1,trackll2),x.max=30,
##' filter=c(min=3,max=Inf),t.interval=0.5,output=FALSE)

##' @importFrom mltools empirical_cdf
##' @export compare_RT_CDF
##' 
############################################################################## 



compare_RT_CDF <- function(trackll = NULL, x.max = 30, filter = c(min = 3, 
    max = Inf), t.interval = 0.5, output = FALSE) {
    ## Import trackll (merged) information
    if (is.null(trackll)) {
        Totaltracklls <- readline(
            paste("Set the numbers of trackll", 
                    "to compare decay (survival curve) of residence time:"))
        Totaltracklls <- as.numeric(Totaltracklls)
    } else {
        Totaltracklls <- as.numeric(length(trackll))
    }
    # cl=c('grey30',my_colorBrewer(9)) cl<-cl[c(1,2,5,6,8,10,9,7,4,3)]
    # Record time interval of the input trackll incase the time interval is
    # different among tracklls.
    t.interval = t.interval
    
    if (is.null(trackll)) {
        trackll = c()
        for (i in c(seq_len(Totaltracklls))) {
            trackll.label <- readline(
                cat("Enter the trackll you want to plot:  "))
            t.interval[i] <- as.numeric(readline(
                cat("What's the t.interval for this trackll in sec:  ")))
            trackll[i] <- get(paste(trackll.label))
            names(trackll)[i] <- names(get(paste(trackll.label)))
        }
    } else {
        t.interval = rep(t.interval, length(trackll))
    }
    
    ## Set plot area and start a plot window.
    par(mar = c(5.1, 5.1, 4.1, 4.1), xpd = FALSE)
    par(mfrow = c(1, 1), bg = "white", fg = "black")
    plot.new()
    plot.window(xlim = c(0, x.max), ylim = c(0, 1))
    
    axis(1, cex.axis = 1.5)
    axis(2, cex.axis = 1.5)
    # title=readline('Set title for the plot:')
    title(main = "1-CDF of dwell time", cex.main = 1.5)
    title(xlab = "Time (s)", cex.lab = 1.5)
    title(ylab = "Survival probability", cex.lab = 1.5)
    box()
    
    ## Generate color set
    cl <- c("grey30", "#FF8E8B", "#65B9FF", "#FF7DE6", "#44D03D", "#DF96FF", 
        "#F6A600", "#00D4EF", "#00D9B0", "#B1C100")
    ## Generate data.frame storing information of trackll name, time
    ## intervals, and corresponding 1-CDF.
    trackllname <- c()
    n <- c()
    ## Set time intervals according to the minimal acquisition time interval
    ## of input tracklls.
    ONE_CDF <- setNames(data.frame(seq(min(t.interval), 
                                       2*x.max, by = min(t.interval))), 
        "Time intervals (s)")
    
    for (i in c(seq_len(Totaltracklls))) {
        trackll.n <- filterTrack(trackll[i], filter = filter)
        trackllname <- append(trackllname, gsub("ST_", "", names(trackll)[i]))
        n <- append(n, length(trackll.n[[1]]))
        ## Calculate track length and 1-CDF
        trajLength <- vapply(trackll.n[[1]], function(x) {
            (x$Frame[dim(x)[1]] - x$Frame[1] + 1) * t.interval[i]
        }, FUN.VALUE=double(1))
        CDF <- mltools::empirical_cdf(trajLength, 
                                        ubounds = seq(min(t.interval), 
            2 * x.max, by = min(t.interval)))
        one_CDF <- (1 - (CDF$CDF))
        ## Plot survival curve
        points(seq(min(t.interval), x.max, by = min(t.interval)), 
                one_CDF[seq_len(x.max/min(t.interval))], 
            type = "l", lwd = 4, col = cl[i])
        ## Record time intervals and corresponding 1-CDF into one data.frame
        ONE_CDF <- cbind(ONE_CDF, setNames(data.frame(one_CDF[seq_len((2 * 
            x.max/min(t.interval)))]), trackllname[i]))
    }
    
    ## Output time intervals and corrsponding 1-CDF in .csv format.
    if (output) {
        filename <- paste("1-CDF-DwellTime", "--", 
                            format(Sys.time(), "%Y%m%d_%H%M%S"), 
                            ".csv", sep = "")
        write.table(ONE_CDF, filename, append = FALSE, sep = ",", 
                    row.names = FALSE)
        cat(" 1-CDF of selected tracklls were output in the working directory. 
        If using the same filter range, the curve is exactly the same as the
        raw data curve in compare_RT_CDF(). Therefore, this output can be used 
        for plotting and fitting in other programs such as Prism")
    }
    
    ## Add legend and reset plot area.
    par(mar = c(0, 0, 0, 0), xpd = TRUE)
    temp <- legend("topright", legend = rep(" ", Totaltracklls), 
        text.width = max(strwidth(trackllname)), 
        xjust = 1, yjust = 1, y.intersp = 2, bty = "n")
    text(temp$rect$left + temp$rect$w, temp$text$y, paste(rep(trackllname), 
        rep(" ( n=", Totaltracklls), rep(n), rep(")", Totaltracklls)), 
        col = cl, pos = 2, cex = 1.5)
    
    # legend('topright',legend =paste(trackllname,' ( n =',n,')'), text.col
    # = cl,col=cl, pch=NULL, lty=1, lwd=4,bty = 'n',cex=2)
    par(mar = c(5.1, 5.1, 4.1, 4.1), xpd = TRUE)
    
    ## Return value: data.frame containing time intervals and corrsponding
    ## 1-CDF
    return(invisible(ONE_CDF))
}
sheng-liu/smt-beta-0.3.9.1 documentation built on April 2, 2021, 1:38 a.m.