Description Usage Arguments Details Value Examples
Caclulate apparent diffusion coefficient (Dcoef) for trajecotries by fitting displacementCDF.
1 2 3 4 5 6 7 8 9 10 11 | fitCDF((cdf, components=c("one","two","three"),
start=list(
oneCompFit=list(D=c(1e-3,2)),
twoCompFit=list(D1=c(1e-3,2),D2=c(1e-3,2),alpha=c(1e-3,1)),
threeCompFit=list(D1=c(1e-3,2),D2=c(1e-3,2),D3=c(1e-3,2),
alpha=c(1e-3,1),beta=c(1e-3,1))),
t.interval=0.01,
maxiter.search=1e3,
maxiter.optim=1e3,
output=F,
seed=NULL)
|
start |
the start value for fitting. |
t.interval |
time interval for image aquisition. Default 0.01 sec. |
maxiter.optim |
maximum iteration in local optimization process. Default ot 1000. |
cdf |
cdf calculated from displacementCDF(). |
components |
parameter specifying the number of components to fit.Currently support one to three components fit. |
maxiter.search |
maximum iteration in random search start value process. defual to 1000. |
output |
Logical indicaring if output file should be generated. |
seed |
Seed for random number generator. This makes each run easily repeatable. Seed will be automatically assigned if no seed is specified (default). The seed information is stored as an attribute of the returned object. The seed can also be output to a txt file when output=T. |
calculating Dceof by fitting displacementCDF.
Reducing the range can greatly increase the precision of the searching; alternatively, if the range are unavailable, increase the maxiter.search so more points will be searched through with the cost of computation time. maxiter.optim barely need to change, if it does not converge with default setting maxiter=1e3, most likely the problem is in the initial values.
on screen output and file Result and parameters of goodness of the fit.
Plot, fiting plot.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # compare folders
folder1=system.file("extdata","SWR1",package="smt")
folder2=system.file("extdata","HTZ1",package="smt")
trackll=compareFolder(c(folder1,folder2))
cdf=displacementCDF(trackll,dt=1,plot=F,output=F)
# specify ranges of parameter value of interest
fitCDF(cdf,components="two",
start=list(
twoCompFit=list(D1=c(1e-3,2),D2=c(1e-3,2),alpha=c(1e-3,1)))
)
# repeat a fit
a=fitCDF(cdf,components="two",output=F)
b=fitCDF(cdf,components="two",output=F,seed=attr(a,"seed"))
# if result are identical
x=summary(a[[1]])
y=summary(b[[1]])
# formula records environment, exclude from the comparison
mapply(identical,x[names(x)!="formula"],y[names(y)!="formula"])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.