### adaptive annealing SMC, use B-spline to solve ODE###
ESSVec <- list()
kappaStore <- list()
sigmaStore <- list()
tempSeq <- list()
tempDifSeq <- list()
c1Store <- list()
c2Store <- list()
# x1, dx1, xx1
dx1 <- matrix(NA, nr = nrow(D1quadbasismat), nc = NP)
x1 <- matrix(NA, nr = nrow(D1quadbasismat), nc = NP)
xx1 <- matrix(NA, nr = nrow(basismat), nc = NP)
# x2, dx2, xx2
dx2 <- matrix(NA, nr = nrow(D1quadbasismat), nc = NP)
x2 <- matrix(NA, nr = nrow(D1quadbasismat), nc = NP)
xx2 <- matrix(NA, nr = nrow(basismat), nc = NP)
logZ = 0
alpha <- 0
alphaDif <- 0
particles <- cbind(c1, c2, theta1, theta2, sigma1, sigma2)
W <- rep(1/NP, NP)
logW <- log(W)
iter <- 0
while(alpha < 1){
iter = iter + 1
c1 <- particles[,1:ncol(basismat)]
c2 <- particles[,(ncol(basismat)+1):(2*ncol(basismat))]
for(i in 1:NP){
dx1[,i] <- D1quadbasismat%*%c1[i,]
x1[,i] <- D0quadbasismat%*%c1[i,]
xx1[,i] <- basismat%*%c1[i,]
dx2[,i] <- D1quadbasismat%*%c2[i,]
x2[,i] <- D0quadbasismat%*%c2[i,]
xx2[,i] <- basismat%*%c2[i,]
}
sigma1 <- particles[,2*ncol(basismat)+3]
sigma2 <- particles[,2*ncol(basismat)+4]
sigma <- cbind(sigma1, sigma2)
kappa <- particles[,(2*ncol(basismat)+1):(2*ncol(basismat)+2)]
logRatio <- rep(NA, NP)
for(i in 1:NP){
logRatio[i] <- tempPosterior(as.vector(kappa[i,]), as.vector(sigma[i,]), y1, y2, xx1[,i], xx2[,i], dx1[,i], dx2[,i], x1[,i], x2[,i], lambda[i])
}
alphaDif <- bisection(func, 0, 1, W, logRatio, CESSthresholds)
alpha <- alpha + alphaDif
if(alpha > 1){
alpha <- 1
alphaDif <- 1- tempSeq[[iter-1]]
}
tempSeq[[iter]] <- alpha
tempDifSeq[[iter]] <- alphaDif
logw <- alphaDif*logRatio + logW
logmax = max(logw)
W = exp(logw-logmax)/sum(exp(logw-logmax))
logW = log(W)
logZ = logZ + log(sum(exp(logw - logmax))) + logmax
RESS <- ESS(logW)
ESSVec[[iter]] <- RESS
if(RESS < resampleThreshold){
ancestor <- systematic.resample(W, num.samples = length(W), engine="R")
particesOld = particles[ancestor,]
logW = rep(-log(NP), NP)
W = rep(1/NP, NP)
}else{
particesOld = particles
}
ptm <- proc.time()
kappa <- particles[, (2*ncol(basismat)+1):(2*ncol(basismat)+2)]
sigma1 <- particles[, (2*ncol(basismat)+3)]
sigma2 <- particles[, (2*ncol(basismat)+4)]
sigma <- cbind(sigma1, sigma2)
for(i in 1:NP){
##sample lambda using Gibbs
lambda[i] <- GB_lambda(alambda, blambda, kappa[i,], M, dx1[,i], dx2[,i], x1[,i], x2[,i], alpha)
##sample sigma
sigma[i,] <- GB_sigma(y1, y2, xx1[,i], xx2[,i], alpha)
##sample kappa
kappa[i,] <- Gibbs_kappa(lambda[i], sigma[i,], dx1[,i], dx2[,i], x1[,i], x2[,i], alpha)
#kappa[i,] <- MH_kappa(lambda, kappa[i,], sigma[i,], c1[i,], c2[i,], alpha)
##sample c1
c1[i,] <- GB_c1(lambda[i], sigma1[i], kappa[i,], dx2[,i], x2[,i], y1, alpha)
##sample c2
c2_llOld <- c2_ll(c2[i,], y2, sigma2[i])
c2_priorOld <- c2_logprior(lambda[i], kappa[i,], c1[i,], c2[i,], y2)
MHstep_c2 <- MH_c2(c2_priorOld, c2_llOld, lambda[i], sigma2[i], kappa[i,], c1[i,], c2[i,], y2, alpha)
c2[i,] <- MHstep_c2$c2
}
proc.time() - ptm
kappaStore[[iter]] <- kappa
sigmaStore[[iter]] <- sigma
c1Store[[iter]] <- c1
c2Store[[iter]] <- c2
#lambdaStore[[iter]] <- lambda
particles <- cbind(c1, c2, kappa, sigma1, sigma2)
#print(apply(kappaStore[[iter]], 2, mean))
#print(apply(sigmaStore[[iter]], 2, mean))
#print(alpha)
#print(mean(lambda))
}
meankappa1 <- sum((kappaStore[[iter]][,1])*W)
kappa1Credible <- wtd.quantile(kappaStore[[iter]][,1], na.rm = FALSE, weights = W, normwt=TRUE, prob = c(0.025, 0.975))
meankappa2 <- sum(kappaStore[[iter]][,2]*W)
kappa2Credible <- wtd.quantile(kappaStore[[iter]][,2], na.rm = FALSE, weights = W, normwt=TRUE, prob = c(0.025, 0.975))
meansigma1 <- sum(sigmaStore[[iter]][,1]*W)
sigma1Credible <- wtd.quantile(sigmaStore[[iter]][,1], na.rm = FALSE, weights = W, normwt=TRUE, prob = c(0.025, 0.975))
meansigma2 <- sum(sigmaStore[[iter]][,2]*W)
sigma2Credible <- wtd.quantile(sigmaStore[[iter]][,2], na.rm = FALSE, weights = W, normwt=TRUE, prob = c(0.025, 0.975))
c1_estimate <- c1Store[[iter]]
c2_estimate <- c2Store[[iter]]
Spline_Matrix1 <- matrix(NA, nr = NP, nc = length(times))
Spline_Matrix2 <- matrix(NA, nr = NP, nc = length(times))
for(i in 1:NP){
Spline_Matrix1[i,] <- basismat%*%c1_estimate[i,]
Spline_Matrix2[i,] <- basismat%*%c2_estimate[i,]
}
MeanSpline1 <- Spline_Matrix1[1,]*W[1]
MeanSpline2 <- Spline_Matrix2[1,]*W[1]
for(i in 2:NP){
MeanSpline1 <- MeanSpline1 + Spline_Matrix1[i,]*W[i]
MeanSpline2 <- MeanSpline2 + Spline_Matrix2[i,]*W[i]
}
c1Mean <- c1_estimate[1,]*W[1]
c2Mean <- c2_estimate[1,]*W[1]
for(i in 2:nrow(c1_estimate)){
c1Mean <- c1Mean + c1_estimate[i,]*W[i]
c2Mean <- c2Mean + c2_estimate[i,]*W[i]
}
c1sd <- rep(0, ncol(c1_estimate)) #
c2sd <- rep(0, ncol(c2_estimate)) #
for(i in 1:nrow(c1_estimate)){ #
c1sd <- c1sd + (c1_estimate[i,] - c1Mean)^2*W[i] #
c2sd <- c2sd + (c2_estimate[i,] - c1Mean)^2*W[i] #
} # #
c1sd <- sqrt(c1sd) #
c2sd <- sqrt(c2sd) # #
## plot ## #
fitted1 <- basismat%*%c1Mean #
upper1 <- fitted1 + 1.96*basismat%*%c1sd #
lower1 <- fitted1 - 1.96*basismat%*%c1sd # #
eval.basis(0, bsbasis)%*%c1Mean #
fitted2 <- basismat%*%c2Mean #
upper2 <- fitted2 + 1.96*basismat%*%c2sd #
lower2 <- fitted2 - 1.96*basismat%*%c2sd # #
eval.basis(0, bsbasis)%*%c2Mean #
plot(output[,2], type = 'l', ylim = c(-8, 11)) #
lines(fitted1, col = 2) #
lines(upper1, lty = 3, col =2) # #
lines(lower1, lty = 3, col =2) # #
plot(output[,3], type = 'l', ylim = c(-80, 100)) #
lines(fitted2, col = 2) #
lines(upper2, lty = 3, col =2) # #
lines(lower2, lty = 3, col =2) #
curve_matrix <- matrix(NA, nr = nrow(basismat), nc = NP)
for(i in 1:NP){
curve_matrix[,i] <- basismat%*%c2_estimate[i,]
}
plot(curve_matrix[, 1], type = 'l', ylim = c(-30, 50))
for(i in 2:NP){
lines(curve_matrix[, i], col = i)
}
upper_curve <- rep(NA, nrow(basismat))
mean_curve <- rep(NA, nrow(basismat))
lower_curve <- rep(NA, nrow(basismat))
for(j in 1:nrow(basismat)){
upper_curve[j] <- wtd.quantile(curve_matrix[j,], probs = 1, type='quantile', weights=W, normwt=TRUE)
lower_curve[j] <- wtd.quantile(curve_matrix[j,], probs = 0, type='quantile', weights=W, normwt=TRUE)
mean_curve[j] <- wtd.quantile(curve_matrix[j,], probs = 0.5, type='quantile', weights=W, normwt=TRUE)
}
plot(mean_curve, type = 'l')
lines(output[,3], type = 'l', col = 3)
lines(upper_curve, type = 'l', col = 2)
lines(lower_curve, type = 'l', col = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.