SemimetricPCA: SemimetricPCA

Description Usage Arguments Value Author(s) References See Also Examples

Description

SemimetricPCA is a function that calculates a distance matrix based on the PCA of the functional data. A Rcpp port of the PCA-type semimetric function of Ferraty and Vieu.

Usage

1
2
3
4
SemimetricPCA(Data1, 
              Data2, 
              q, 
              EigenVec = NULL)

Arguments

Data1

Matrix with functional data (curves) each row one; n rows

Data2

Matrix with a second set of functional data (curves) each row one; m rows

q

Number of principal components

EigenVec

The Eigenvectors based on DATA1

Value

Semimetric returns a list with: semimetric as the n x m - distance-matrix EigenVec The Eigenvectors based on DATA1, which can be reused in following semimetric calculations

Author(s)

Simon Mueller simon.mueller@mathematik.uni-stuttgart.de

References

http://www.math.univ-toulouse.fr/staph/npfda/

Ferraty, F. and Vieu, P. Nonparametric Functional Data Analysis. Springer 2006.

See Also

Semimetric

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
# functional data sets
require (fds)

# fat spectrum dataset
X <- t(Fatspectrum$y)

# setup semimetric parameter
q <- 4

# calculate distance matrix
Dist1 <- SemimetricPCA (X[1:100, ], 
                        X[101:150, ], 
                        q)

# calculate distance matrix using Hhalf
Dist2 <- SemimetricPCA (X[1:100, ], 
                        X[151:215, ], 
                        q, 
                        Dist1$EigenVec)

sipemu/Nonparametric-Functional-Data-Analysis documentation built on May 29, 2019, 10:10 p.m.