Description Details Author(s) References Examples
C++-functions for different nonparametric kernel estimates. Originally written in R by Ferraty and Vieu (2006) Nonparametric Functional Data Analysis. Original code can be downloaded on their website http://www.math.univ-toulouse.fr/staph/npfda/
Package: | nfda |
Type: | Package |
Version: | 0.2-1 |
Date: | 2011-12-15 |
License: | GPL-2 |
LazyLoad: | yes |
Maintainer: Simon Mueller <Simon.Mueller@mathematik.uni-stuttgart.de>
http://www.math.univ-toulouse.fr/staph/npfda/
Ferraty, F. and Vieu, P. Nonparametric Functional Data Analysis. Springer 2006.
Rachdi, M. and Vieu, P. Nonparametric regression for functional data: automatic smoothing parameter selection. Journal of Statistical Planning and Inference 137, 9 (2007), 2784-2801.
Benhenni, K., Ferraty, F., Rachdi, M., and Vieu, P. Local smoothing regression with functional data. Computational Statistics 22, 3 (2007) 353-369.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ##
#
# an example on nonparametric kernel regression
#
##
# functional data sets
library (fds)
# fat spectrum dataset
Y <- Fatvalues
X <- t(Fatspectrum$y)
# setup semimetric parameters
semimetric.params <- c()
semimetric.params$q <- 2
semimetric.params$nknot <- 20
semimetric.params$range.grid <- c (min (Fatspectrum$x),
max (Fatspectrum$x))
# learn and testsample
learn <- 1:160
test <- 161:215
# parameter estimation and prediction by cross-validation
Learn.Fat.CV <- FuNopaRe (X[learn, ],
Y[learn],
semimetric = "Deriv",
semimetric.params,
bandwidth = "CV")
Predict.Fat.CV <- predict (Learn.Fat.CV,
X[test, ],
method.params = NULL)
plot (Predict.Fat.CV$Prediction, Y[161:215])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.