FuNopaRe: Nonparametric Regression for Functional Data

Description Usage Arguments Value Author(s) References See Also Examples

Description

FuNopaRe is a function that estimates optimal bandwidth of the kernel estimate based on the learning data.

Usage

1
FuNopaRe(X, Y, semimetric, semimetric.params, bandwidth = "CV")

Arguments

X

Matrix with the functional data (curves) each row one

Y

Vector of the scalar responses

semimetric

A string of choosing the semimetric; allowed are: "Deriv" and "PCA"

semimetric.params

Parameters for the semimetric function.

bandwidth

Method for choosing the bandwidth; allowed are: "CV"(default), "kNNgCV", and "kNNlCV"

Value

FuNopaRe returns an object of the class FuNopaRe;

Author(s)

Simon Mueller simon.mueller@mathematik.uni-stuttgart.de

References

Ferraty, F. and Vieu, P. Nonparametric Functional Data Analysis. Springer 2006.

Rachdi, M. and Vieu, P. Nonparametric regression for functional data: automatic smoothing parameter selection. Journal of Statistical Planning and Inference 137, 9 (2007), 2784-2801.

Benhenni, K., Ferraty, F., Rachdi, M., and Vieu, P. Local smoothing regression with functional data. Computational Statistics 22, 3 (2007) 353???369.

See Also

Semimetric, predict.FuNopaRe

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# functional datasets
require (fds)

# fat spectrum dataset
Y <- Fatvalues
X <- t(Fatspectrum$y)

# setup semimetric params
semimetric.params <- c()
semimetric.params$q <- 2
semimetric.params$nknot  <- 20
semimetric.params$range.grid  <- c (min (Fatspectrum$x), 
                                    max (Fatspectrum$x))

# learn and testsample
learn <- 1:160
test <- 161:215

# parameter estimation and prediction by cross-validation
Learn.Fat.CV <- FuNopaRe (X[learn, ], 
                          Y[learn], 
                          semimetric = "Deriv", 
                          semimetric.params, 
                          bandwidth = "CV")

sipemu/Nonparametric-Functional-Data-Analysis documentation built on May 29, 2019, 10:10 p.m.