Description Usage Arguments Value Author(s) References See Also Examples
FuNopaRe
is a function that estimates optimal bandwidth of the kernel
estimate based on the learning data.
1 | FuNopaRe(X, Y, semimetric, semimetric.params, bandwidth = "CV")
|
X |
Matrix with the functional data (curves) each row one |
Y |
Vector of the scalar responses |
semimetric |
A string of choosing the semimetric; allowed are: "Deriv" and "PCA" |
semimetric.params |
Parameters for the semimetric function. |
bandwidth |
Method for choosing the bandwidth; allowed are: "CV"(default), "kNNgCV", and "kNNlCV" |
FuNopaRe
returns an object of the class
FuNopaRe
;
Simon Mueller simon.mueller@mathematik.uni-stuttgart.de
Ferraty, F. and Vieu, P. Nonparametric Functional Data Analysis. Springer 2006.
Rachdi, M. and Vieu, P. Nonparametric regression for functional data: automatic smoothing parameter selection. Journal of Statistical Planning and Inference 137, 9 (2007), 2784-2801.
Benhenni, K., Ferraty, F., Rachdi, M., and Vieu, P. Local smoothing regression with functional data. Computational Statistics 22, 3 (2007) 353???369.
Semimetric, predict.FuNopaRe
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # functional datasets
require (fds)
# fat spectrum dataset
Y <- Fatvalues
X <- t(Fatspectrum$y)
# setup semimetric params
semimetric.params <- c()
semimetric.params$q <- 2
semimetric.params$nknot <- 20
semimetric.params$range.grid <- c (min (Fatspectrum$x),
max (Fatspectrum$x))
# learn and testsample
learn <- 1:160
test <- 161:215
# parameter estimation and prediction by cross-validation
Learn.Fat.CV <- FuNopaRe (X[learn, ],
Y[learn],
semimetric = "Deriv",
semimetric.params,
bandwidth = "CV")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.