Description Usage Arguments Value Author(s) References Examples
BootstrapData
is a function that calculates the bootstrap response
based on Yhat
1 2 3 4 | BootstrapData (Y.learn,
Y.learn.hat,
Resampling.Method = "homoscedatic",
NB = 100)
|
Y.learn |
n response values of the learning set |
Y.learn.hat |
n prediction of the response values of the learning set |
Resampling.Method |
Bootstrap method: "homoscedastic" (default), "wild.continuous", and "wild.twopoint" |
NB |
Number of bootstrap samples |
W
n x NB-Matrix of bootstrapped response.
Simon Mueller simon.mueller@mathematik.uni-stuttgart.de
Ferraty, F., Van Keillegom, I., and Vieu, P. On the Validity of the Bootstrap in Non-Parametric Functional Regression. Scandinavian Journal of Statistics, Vol. 37 (2010), pp. 286-306.
Davidson, J., Monticini, A., and Peel, D. Implementing the wild bootstrap using a two-point distribution. Economics Letters, Vol. 96, No. 3. (2007), pp. 309-315.
Mammen, E. Resampling Methods for Nonparametric Regression. In Smoothing and Regres- sion: Approaches, Computation, and Application, M. G. Schimek, Ed. John Wiley, 2000.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | # functional data sets
library (fds)
# fat spectrum dataset
Y <- Fatvalues
X <- t(Fatspectrum$y)
# setup semimetric parameters
semimetric.params <- c()
semimetric.params$q <- 2
semimetric.params$nknot <- 20
semimetric.params$range.grid <- c (min (Fatspectrum$x),
max (Fatspectrum$x))
# learn and testsample
learn <- 1:160
test <- 161:215
# parameter estimation and prediction by cross-validation
Learn.Fat.CV <- FuNopaRe (X[learn, ],
Y[learn],
semimetric = "Deriv",
semimetric.params,
bandwidth = "CV")
method.params <- c()
method.params$NB <- 100
method.params$Resampling.Method <- "homoscedatic"
method.params$neighbours <- 20
method.params$alpha <- 0.05
Predict.Fat.CV <- predict (Learn.Fat.CV,
X[test, ],
method.params = method.params,
Bootstrapping = TRUE)
plot (Predict.Fat.CV$Prediction, Y[161:215])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.