Description Usage Arguments Value Author(s) References See Also Examples
predict.FuNopaRe
is a function for predictions from the result of
nonparametric modell fitting.
1 2 |
object |
Afitted object of class inheriting from |
newdata |
Matrix with the functional data (curves) each row one for prediction |
method.params |
Parameters for bootstrapping |
Bootstrapping |
Using bootstrapping for local adaptive bandwidth selection |
... |
further arguments passed to or from other methods |
FuNopaRe
returns an object of the class
FuNopaRe
;
additional with the predictions in the vector Prediction
.
Simon Mueller simon.mueller@mathematik.uni-stuttgart.de
Ferraty, F. and Vieu, P. Nonparametric Functional Data Analysis. Springer 2006.
Rachdi, M. and Vieu, P. Nonparametric regression for functional data: automatic smoothing parameter selection. Journal of Statistical Planning and Inference 137, 9 (2007), 2784-2801.
Benhenni, K., Ferraty, F., Rachdi, M., and Vieu, P. Local smoothing regression with functional data. Computational Statistics 22, 3 (2007) 353???369.
Semimetric
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | # functional data sets
library (fds)
# fat spectrum dataset
Y <- Fatvalues
X <- t(Fatspectrum$y)
# setup semimetric parameters
semimetric.params <- c()
semimetric.params$q <- 2
semimetric.params$nknot <- 20
semimetric.params$range.grid <- c (min (Fatspectrum$x),
max (Fatspectrum$x))
# learn and testsample
learn <- 1:160
test <- 161:215
# parameter estimation and prediction by cross-validation
Learn.Fat.CV <- FuNopaRe (X[learn, ],
Y[learn],
semimetric = "Deriv",
semimetric.params,
bandwidth = "CV")
Predict.Fat.CV <- predict (Learn.Fat.CV,
X[test, ],
method.params = NULL)
plot (Predict.Fat.CV$Prediction, Y[161:215])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.