# VAST univariate model with seasonal effects
# modified from https://github.com/James-Thorson-NOAA/VAST/wiki/Index-standardization
# install.packages('TMB', type = 'source')
# remotes::install_github("james-thorson/VAST")
library(dplyr)
library(tidyr)
library(ggplot2)
library(VAST)
# library(furrr)
#
# ## For some reason I need to make sure Rtools has path properly set, else TMB won't compile
# Sys.setenv(PATH = paste("C:/Rtools/bin", Sys.getenv("PATH"), sep=";"))
# Sys.setenv(BINPREF = "C:/Rtools/mingw_$(WIN)/bin/")
# Load Data -----
data("ecomon_epu")
# # # Number of stations per year
# total_stations <- ecomon_epu %>%
# group_by(year) %>%
# summarize(total = n_distinct(id))
#
# season_list <- c("winter", "spring", "summer", "fall")
# #
# # ## Proportion of stations with positive tows per year. Cutoff used to "keep"
# spps <- ecomon_epu %>%
# mutate(present = ifelse(abundance > 0,
# 1, 0)) %>%
# filter(year >= 1994,
# spp != "euph1") %>%
# left_join(total_stations) %>%
# group_by(year, season, spp) %>%
# summarize(positive_stations = sum(present, na.rm = TRUE)/total,
# keep = ifelse(positive_stations > .10,
# 1, 0)) %>%
# distinct()
# #
# # ## List of spp where the total number of years by season is greater than 5
# # ## and each spp group has more than cutoff of positive tows
# spp_list <- spps %>%
# filter(season %in% season_list) %>%
# group_by(spp, season) %>%
# summarize(count = sum(keep)) %>%
# filter(all(count > 5)) %>%
# select(spp) %>%
# distinct() %>%
# pull(spp)
spp_list <- c("calfin", "chaeto", "cham", "clauso", "ctyp",
"euph", "gas", "hyper", "larvaceans",
"mlucens", "oithspp", "para", "pseudo", "tlong")
season_list <- c("spring", "fall")[1]
vast_wrapper <- function(season = c("spring", "fall")[1], n_x = 50) {
## Seasonal model -----
working_dir <- here::here(sprintf("analysis/vast_EOF3/zoop_%s", season))
if(!dir.exists(working_dir)) {
dir.create(working_dir, recursive = TRUE)
}
#
## Attempt to create a log file
my_log <- file(sprintf("%s/%s_log-%s.txt", working_dir, season, n_x)) # File name of output log
sink(my_log, append = TRUE, type = "output") # Writing console output to log file
on.exit(sink(file = NULL), add = TRUE, after = TRUE)
sink(my_log, append = TRUE, type = "message")
on.exit(sink(file = NULL), add = TRUE, after = TRUE)
zoop_dat <- ecomon_epu %>%
dplyr::filter(spp %in% spp_list,
EPU %in% c("GB", "GOM", "MAB"),
season == !!season,
as.numeric(year) >= 1994) %>%
dplyr::mutate(areaswept_km2 = 1) %>%
group_by(year, season) %>%
# slice_sample(prop = .5) %>%
# droplevels() %>%
data.frame()
# ggplot(zoop_dat, aes(x = lon, y = lat)) +
# geom_point(data = zoop_dat %>% filter(abundance == 0), color = "black", fill = "black", shape = 21) +
# geom_point(data = zoop_dat %>% filter(abundance > 0), aes(color = season, size = abundance), alpha = 0.5) +
# facet_wrap(~year) +
# # labs(title = i) +
# NULL
#
# # Some last processing steps
zoop_dat = zoop_dat[, c("year", "lat", "lon", "areaswept_km2", "abundance")]
#####
## Model settings
#####
## Random Fields -----
## Control the random fields part of the model.
## Omega = X is the number of random spatial fields to apply
## and Epsilon = X is the number of random spatio-temporal
## fields to apply. Omega1 is for the probability of
## occurrence, and Omega2 is for the density given occurrence,
## similarly for Epsilon.
## 0 = off
## "AR1" = AR1 process
## >1 = number of elements in a factor-analysis covariance
## "IID" = random effect following an IID distribution
# FieldConfig <- c("Omega1" = "IID",
# "Epsilon1" = "IID", "Omega2" = "IID", "Epsilon2" = "IID")
FieldConfig_eof3 <- matrix(c("IID", "Identity", "IID", 2, 0, 0, "IID", "Identity"), ncol = 2, nrow = 4,
dimnames = list(c("Omega", "Epsilon", "Beta", "Epsilon_year"),
c("Component_1", "Component_2")))
## Autoregressive structure -----
## Control autoregressive structure for parameters over time
## Changing the settings here creates different
## autoregressive models for the intercept (Beta) and
## spatio-temporal process (Epsilon).
## 0 = each year is a fixed effect
## 1 = random effect
## 2 = random walk
## 3 = fixed effect that is constant over time
## 4 = AR1 process
RhoConfig <- c("Beta1" = c(0, 1, 2, 3, 4)[1],
"Beta2" = c(0, 1, 2, 3, 4)[4],
"Epsilon1" = c(0, 1, 2, 3, 4)[1],
"Epsilon2" = c(0, 1, 2, 3, 4)[1])
## Correlated overdispersion -----
## Control correlated overdispersion among categories
## for each level of v_i, where eta1 is for encounter
## probability, and eta2 is for positive catch rates
# eta1 = vessel effects on prey encounter rate
# eta2 = vessel effects on prey weight
## 0 = off,
## "AR1" = AR1 process,
## >0 = number of elements in a factor-analysis covariance
OverdispersionConfig <- c("eta1" = 0,
"eta2" = 0)
## Observation model -----
# Control observation model structure. The first
# component sets the distribution of the positive
# distribution component. ?VAST::make_data()
ObsModel <- c("PosDist" = 1, # Delta-Gamma; Alternative "Poisson-link delta-model" using log-link for numbers-density and log-link for biomass per number
"Link" = 1)
# Make settings
settings = make_settings(n_x = n_x,
Region = "northwest_atlantic",
strata.limits = "EPU",
purpose = "EOF3",
n_categories = 2,
FieldConfig = FieldConfig_eof3,
# RhoConfig = RhoConfig,
ObsModel = ObsModel,
bias.correct = FALSE,
Options = c('treat_nonencounter_as_zero' = TRUE) )
settings$epu_to_use <- c("Georges_Bank", "Gulf_of_Maine", "Mid_Atlantic_Bight")
#####
## Model fit -- make sure to use new functions
#####
fit = fit_model(settings = settings,
Lat_i = zoop_dat$lat,
Lon_i = zoop_dat$lon,
t_i = zoop_dat$year,
b_i = as_units(zoop_dat$abundance, "count"),
a_i = as_units(zoop_dat$areaswept_km2, "km^2"),
epu_to_use = settings$epu_to_use,
working_dir = working_dir,
Use_REML = TRUE,
run_model = TRUE,
# build_model = TRUE,
test_fit = FALSE,
getsd = FALSE,
newtonsteps = 0,
Options = c('treat_nonencounter_as_zero' = TRUE),
optimize_args = list("lower" = -Inf,
"upper" = Inf))
saveRDS(fit, file = paste0(working_dir, "/fit.rds"))
# saveRDS(index_ctl_sd_array, file = paste0(working_dir, "/index_ctl_sd_array.rds"))
}
# Plot results, including spatial term Omega1
results = plot( fit,
check_residuals=FALSE,
plot_set=c(3,16))
list.files(system.file("executables",package = "VAST"))
fit$settings$Version
fit$input_args$model_args_input
dyn.load( TMB::dynlib("VAST_v13_0_0") )
fit <- readRDS(here::here(working_dir, "fit.rds"))
fit_now <- reload_model(x = fit_orig)
possibly_vast_wrapper <- purrr::quietly(vast_wrapper)
# plan(multisession, workers = 4)
vast_runs <- purrr::map(.x = season_list, .f = possibly_vast_wrapper)
# plan(sequential)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.