preproc_data_fcnet = function(config, seed = 123L, n_max = 5*10^6, frac = .1) {
set.seed(seed)
path = config$data_path
dt = readRDS(path)
dt = dt[, valid_mse := NULL]
tt = split_by_col(dt, by = "task", frac = frac)
# Preproc train data
train = tt$train
# We get rid of some upper outliers in training. This leads to mathematical instabilities otherwise.
upper_outliers = which(rowSums(train[, map(.SD, function(tv) tv > quantile(tv, 0.999)), .SDcols = config$target_variables]) >= 1)
if (length(upper_outliers)) {
train = train[-upper_outliers, ]
}
train = preproc_iid(train)
train = sample_max(train, n_max)
train = apply_cummean_variance_param(train, mean = c("runtime", "valid_loss"), sum = NULL, fidelity_param = "replication", ignore = "n_params")
trafos = c(
map(train[, c("n_params", "runtime"), with = FALSE], scale_base_0_1, base = 10, p = 0),
map(train[, c("valid_loss"), with = FALSE], scale_neg_exp),
map(train[, c("batch_size", "n_units_1", "n_units_2"), with = FALSE], scale_base_0_1, base = 1, p = 0),
map(train[, c("init_lr"), with = FALSE], scale_base, base = 10)
)
train[, names(trafos) := pmap(list(.SD, trafos), function(x, t) {t$trafo(x)}), .SDcols = names(trafos)]
y = as.matrix(train[, config$target_variables, with = FALSE])
train = train[, (config$target_variables) := NULL]
if (frac) {
# Preproc test data
oob = tt$test
oob = preproc_iid(oob, keep_cols = colnames(train))
oob = apply_cummean_variance_param(oob, mean = c("runtime", "valid_loss"), sum = NULL, fidelity_param = "replication", ignore = "n_params")
oob[, names(trafos) := pmap(list(.SD, trafos), function(x, t) {t$trafo(x)}), .SDcols = names(trafos)]
ytest = as.matrix(oob[, config$target_variables, with = FALSE])
oob = oob[, (config$target_variables) := NULL]
} else {
oob = NULL
ytest = NULL
}
list(
xtrain = train,
ytrain = y,
xtest = oob,
ytest = ytest,
trafos = trafos
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.