model {
# Define likelihood model for data:
for (p in 1:N_patients)
{
# probability of belonging to the bad group
bad.p[p] ~ dbern(prob.of.bad.hosp)
# index the bad group in a.prob
index.bad.p[p] <- bad.p[p] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response[h_GUID[p],a] ~ dbern(a.prob[a, index.bad.p[p]])
}
}
for (gp in 1:N_gp)
{
# probability of belonging to the bad group
bad.gp[gp] ~ dbern(prob.of.bad.gp)
# index the bad group in a.prob
index.bad.gp[gp] <- bad.gp[gp] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response[gp_GUID[gp],a] ~ dbern(a.prob[a, index.bad.gp[gp]])
}
}
for (v in 1:N_volunteers)
{
# probability of belonging to the bad group
bad.v[v] ~ dbern(prob.of.bad.vol)
# index the bad group in a.prob
index.bad.v[v] <- bad.v[v] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response[v_GUID[v],a] ~ dbern(a.prob[a, index.bad.v[v]])
}
}
for (o in 1:N_outpatients)
{
# probability of belonging to the bad group
bad.o[o] ~ dbern(prob.of.bad.out)
# index the bad group in a.prob
index.bad.o[o] <- bad.o[o] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response[o_GUID[o],a] ~ dbern(a.prob[a, index.bad.o[o]])
}
}
for (x in 1:N_fly)
{
# probability of belonging to the bad group
bad.fly[x] ~ dbern(prob.of.bad.fly)
# index the bad group in a.prob
index.bad.fly[x] <- bad.fly[x] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response_animal[fly_GUID[x],a] ~ dbern(a.prob[a, index.bad.fly[x]])
}
}
for (y in 1:N_turtle)
{
# probability of belonging to the bad group
bad.turtle[y] ~ dbern(prob.of.bad.turtle)
# index the bad group in a.prob
index.bad.turtle[y] <- bad.turtle[y] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response_animal[turtle_GUID[y],a] ~ dbern(a.prob[a, index.bad.turtle[y]])
}
}
for (z in 1:N_crow)
{
# probability of belonging to the bad group
bad.crow[z] ~ dbern(prob.of.bad.crow)
# index the bad group in a.prob
index.bad.crow[z] <- bad.crow[z] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response_animal[crow_GUID[z],a] ~ dbern(a.prob[a, index.bad.crow[z]])
}
}
# ------------------------
# Define the priors:
for(a in 1:antibiotic_classes)
{
# probability of being resistant in the good group (less resistances)
antibiotic.class.effect[a, 1] ~ dnorm(intercept, tau.class)
logit(a.prob[a,1]) <- antibiotic.class.effect[a, 1]
# probability of being resistant in the bad group (many resistances) will
# always be higher than the good group
antibiotic.class.effect[a, 2] ~ dnorm(intercept.plus, tau.class)
logit(a.prob[a,2]) <- antibiotic.class.effect[a, 2]
}
# Prior value for intercept
intercept ~ dnorm(0, 0.001)
# Difference between distribution means of "good" and "bad" groups
diff ~ dgamma(0.001, 0.001)
intercept.plus <- intercept + diff
# Probability of being in the bad group
prob.of.bad.hosp ~ dbeta(1, 1)
prob.of.bad.gp ~ dbeta(1, 1)
prob.of.bad.vol ~ dbeta(1, 1)
prob.of.bad.out ~ dbeta(1, 1)
prob.of.bad.fly ~ dbeta(1, 1)
prob.of.bad.turtle ~ dbeta(1, 1)
prob.of.bad.crow ~ dbeta(1, 1)
# Prior values for precision
tau.class ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd.class <- sqrt(1/tau.class)
#monitor# full.pd, dic, deviance, a.prob, prob.of.bad.hosp, prob.of.bad.gp, prob.of.bad.vol, prob.of.bad.out, prob.of.bad.fly, prob.of.bad.turtle, prob.of.bad.crow, bad.p, bad.gp, bad.v, bad.o, bad.fly, bad.turtle, bad.crow, intercept, sd.class
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.