model {
# Define likelihood model for data:
# Carbapenem resistance in hospital (gp, volunteer, and outpatient) samples
# is Bernoulli distributed with probability c.prob (gp.prob, v.prob,
# and o.prob)
for (p in 1:N_patients) {
h_resist[p] ~ dbern(c.prob[clinical[sample_type[h_sample_GUID[p]]]])
# For WAIC computation
# h_like[p] <- logdensity.bin(h_resist[p],
# c.prob[clinical[sample_type[h_sample_GUID[p]]]], 1)
}
for (gp in 1:N_gp) {
gp_resist[gp] ~ dbern(gp.prob)
# gp_like[gp] <- logdensity.bin(gp_resist[gp], gp.prob, 1)
}
for (v in 1:N_volunteers) {
v_resist[v] ~ dbern(v.prob)
# v_like[v] <- logdensity.bin(v_resist[v], v.prob, 1)
}
for (o in 1:N_outpatients) {
o_resist[o] ~ dbern(o.prob)
# o_like[o] <- logdensity.bin(o_resist[o], o.prob, 1)
}
# ------------------------
# Define the priors:
# Prior distribution for c.effect (log-odds for each clinical class). Sample
# different c.effect from normal distribution for each clinical class and
# convert to a probability). Since there is only one response variable, with
# only two levels, set intercept to 0 (here we're estimating two parameters
# -- clinical and carriage -- so we can't use more than two things to explain
# it; infact only use tau.clin).
for (c in c(ncarr, nclin)) # 1, 2!
{
c.effect[c] ~ dnorm(0, tau.clin)
logit(c.prob[c]) <- c.effect[c]
}
# Prior belief about c.prob, gp.effect, v.effect, and o.effect vary
# with c.effect
gp.effect <- c.effect[gp_clinical]
logit(gp.prob) <- gp.effect
o.effect <- c.effect[o_clinical]
logit(o.prob) <- o.effect
v.effect <- c.effect[v_clinical]
logit(v.prob) <- v.effect
# ------------------------
# Prior values for precision
tau.clin ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd.clin <- sqrt(1/tau.clin)
# Calculate difference in log odds of carriage from clinical
c.diff <- c.effect[ncarr] - c.effect[nclin]
# Calculate odds
odds.c <- exp(c.diff)
#monitor# full.pd, dic, deviance, c.effect, c.prob, odds.c, sd.clin
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.