model {
# Define likelihood model for data:
# Carbapenem resistance in hospital (gp, volunteer, and outpatient) samples
# is Bernoulli distributed with probability wc.prob (gp.prob, v.prob,
# and o.prob)
for (p in 1:N_patients)
{
h_resist[p] ~ dbern(stc.prob[sample_type[h_sample_GUID[p]],
clinical[sample_type[h_sample_GUID[p]]]])
}
for (gp in 1:N_gp)
{
gp_resist[gp] ~ dbern(stc.prob[sample_type[gp_sample_GUID[gp]],
gp_clinical])
}
for (v in 1:N_volunteers)
{
v_resist[v] ~ dbern(stc.prob[sample_type[v_sample_GUID[v]],
v_clinical])
}
for (o in 1:N_outpatients)
{
o_resist[o] ~ dbern(stc.prob[sample_type[o_sample_GUID[o]],
o_clinical])
}
# ------------------------
# Define the priors:
# Prior distribution for wt.effect (log-odds for each ward type). Sample
# different wt.effect from normal distribution for each ward type and
# convert to a probability). Put intercept here.
# Prior distribution for wc.effect (log-odds for each clinical class). Sample
# different clin.effect from normal distribution for each clinical class and
# convert to a probability). Since intercept is in wt, set mean to 0.
# Prior distribution for wtc.effect
for (c in c(ncarr, nclin)) # 1, 2!
{
clin.effect[c] ~ dnorm(0, tau.clin)
logit(c.prob[c]) <- clin.effect[c]
for (st in sampletypes)
{
stc.effect[st,c] ~ dnorm(clin.effect[c], tau.stc)
logit(stc.prob[st,c]) <- stc.effect[st,c]
}
}
# ------------------------
# Prior values for precision
tau.clin ~ dgamma(0.001, 0.001)
tau.stc ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd.clin <- 1/sqrt(tau.clin)
sd.stc <- 1/sqrt(tau.stc)
# Calculate odds
c.diff <- clin.effect[ncarr] - clin.effect[nclin]
odds.c <- exp(c.diff)
#monitor# full.pd, dic, deviance, clin.effect, c.prob, odds.c, sd.clin, sd.stc
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.