model {
# Define likelihood model for data:
# Carbapenem resistance in hospital (gp, volunteer, and outpatient) samples
# is Bernoulli distributed with probability wcg.prob (gpg.prob, vg.prob,
# and og.prob)
for (p in 1:N_patients) # hospital samples
{
h_resist[p] ~ dbern(cwtg_w.prob[ward[h_sample_GUID[p]],
clinical[sample_type[h_sample_GUID[p]]],
gender[h_sample_GUID[p]]])
}
for (gp in 1:N_gp) # gp samples
{
gp_resist[gp] ~ dbern(gpg.prob[gender[gp_sample_GUID[gp]]])
}
for (v in 1:N_volunteers) # volunteer samples
{
v_resist[v] ~ dbern(vg.prob[gender[o_sample_GUID[v]]])
}
for (o in 1:N_outpatients) # outpatient samples
{
o_resist[o] ~ dbern(og.prob[gender[o_sample_GUID[o]]])
}
# ------------------------
# Prior distribution for gender.effect (log-odds for each gender).
# Sample different gender.effect from normal distribution for each gender
# and convert to a probability). Since there is only one response
# variable, with only two elements, set intercept as 0.
gender.effect[female] ~ dnorm(0, 0.001) # params = 1
gender.effect[male] <- -gender.effect[female]
# Prior distribution for wt.effect (log-odds for each ward type).
# Sample different wt.effect from normal distribution for each ward type
# and convert to a probability).
for (wt in hosp_wardtypes)
{
wt.effect[wt] ~ dnorm(intercept, tau.wt) # params = 8 + 1
logit(wt.prob[wt]) <- wt.effect[wt]
}
# Prior distribution for clin.effect (log-odds for each clinical class).
# Sample different clin.effect from normal distribution for each clinical
# class and convert to a probability). Since there is only one response
# variable, with only two elements, set intercept as 0.
clin.effect[ncarr] ~ dnorm(0, 0.001) # params = 1
clin.effect[nclin] <- -clin.effect[ncarr]
# equivalent to clin.effect + wt.effect:
gp.effect ~ dnorm(clin.effect[gp_clinical], tau.wt) # params = 2
v.effect ~ dnorm(clin.effect[v_clinical], tau.wt) # params = 2
o.effect ~ dnorm(clin.effect[o_clinical], tau.wt) # params = 2
# Prior distribution for wt.effect (log-odds for each ward type).
# Sample different clin.effect from normal distribution for each clinical
# class and convert to a probability).
for (g in genders)
{
for (c in c(ncarr, nclin))
{
for (wt in hosp_wardtypes)
{
wtcg.effect[wt,c,g] <- clin.effect[c] + wt.effect[wt] + gender.effect[g]
}
for (w in hosp_wards)
{
cwtg_w[w,c,g] ~ dnorm(wtcg.effect[ward_type[w],c,g], tau.w)
logit(cwtg_w.prob[w,c,g]) <- cwtg_w[w,c,g] # params = 119*2*2
}
}
# equivalent to cwtg_w.prob
logit(gpg.prob[g]) <- gp.effect + gender.effect[g]
logit(vg.prob[g]) <- v.effect + gender.effect[g]
logit(og.prob[g]) <- o.effect + gender.effect[g]
}
# ------------------------
# Prior value for intercept
intercept ~ dnorm(0, 0.001) # params = 1
# Prior values for precision
tau.wt ~ dgamma(0.001, 0.001) # params = 1
tau.w ~ dgamma(0.001, 0.001) # params = 1
# Convert precisions to sd
sd.wt <- 1/sqrt(tau.wt)
sd.w <- 1/sqrt(tau.w)
# Calculate odds
c_diff <- clin.effect[ncarr] - clin.effect[nclin]
odds_c <- exp(c_diff)
g_diff <- gender.effect[male] - gender.effect[female]
odds_g <- exp(g_diff)
#monitor# full.pd, dic, deviance, gpg.prob, vg.prob, og.prob, odds_c, c_diff, g_diff, odds_g, sd.wt, sd.w
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.