model {
# Define likelihood model for data:
# Carbapenem resistance in hospital (gp, volunteer, and outpatient) samples
# is Bernoulli distributed with probability cw.prob (gp.prob, v.prob,
# and o.prob)
for (p in 1:N_patients)
{
h_resist[p] ~ dbern(cwtw.prob[clinical[sample_type[h_sample_GUID[p]]],
ward_type[ward[h_sample_GUID[p]]],
ward[h_sample_GUID[p]]])
}
for (gp in 1:N_gp)
{
gp_resist[gp] ~ dbern(gpw.prob)
}
for (v in 1:N_volunteers)
{
v_resist[v] ~ dbern(vw.prob)
}
for (o in 1:N_outpatients)
{
o_resist[o] ~ dbern(ow.prob)
}
# ------------------------
# Define the priors:
# Prior distribution for clin.effect (log-odds for each clinical class).
# Sample different clin.effect from normal distribution for each clinical
# class and convert to a probability).
#
# Since we're estimating exactly one parameter (the carriage effect),
# we can't use more than one thing to explain it... so we don't include a
# hyperparameter (e.g. mu or tau).
#
# log odds of a carriage sample = intercept + clin.effect[ncarr]
# log odds of a clinical sample = intercept - clin.effect[ncarr]
clin.effect[ncarr] ~ dnorm(0, 0.001)
clin.effect[nclin] <- -clin.effect[ncarr]
# Prior distribution for ward.effect
for (w in hosp_wards)
{
ward.effect[w] ~ dnorm(0, tau.w)
}
for (wt in hosp_wardtypes)
{
wt.effect[wt] ~ dnorm(intercept, tau.wt)
}
for (c in c(ncarr, nclin))
{
for (wt in hosp_wardtypes)
{
for (w in hosp_wards)
{
cwtw.effect[c,wt,w] <- intercept + clin.effect[c] + wt.effect[wt] +
ward.effect[w]
logit(cwtw.prob[c,wt,w]) <- cwtw.effect[c,wt,w]
}
}
}
# equivalent to clin + wt
gp.effect ~ dnorm(clin.effect[gp_clinical], tau.wt)
v.effect ~ dnorm(clin.effect[v_clinical], tau.wt)
o.effect ~ dnorm(clin.effect[o_clinical], tau.wt)
# equivalent to clin + wt + w
gpw.effect ~ dnorm(gp.effect, tau.w)
vw.effect ~ dnorm(v.effect, tau.w)
ow.effect ~ dnorm(o.effect, tau.w)
# convert to probability
logit(gpw.prob) <- gpw.effect
logit(vw.prob) <- vw.effect
logit(ow.prob) <- ow.effect
# ------------------------
# Prior value for intercept
intercept ~ dnorm(0, 0.001)
# Prior values for precision
tau.wt ~ dgamma(0.001, 0.001)
tau.w ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd.w <- 1/sqrt(tau.w)
sd.wt <- 1/sqrt(tau.wt)
# Calculate odds
c.diff <- clin.effect[ncarr] - clin.effect[nclin]
odds.c <- exp(c.diff)
#monitor# full.pd, dic, deviance, intercept, clin.effect, gp.prob, v.prob, o.prob, odds.c, c.diff, sd.w, sd.wt
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.