model {
# Define likelihood model for data:
# Carbapenem resistance in hospital (gp, volunteer, and outpatient) samples
# is Bernoulli distributed with probability cw.prob (gp.prob, v.prob,
# and o.prob)
for (p in 1:N_patients)
{
h_resist[p] ~ dbern(cw.prob[ward[h_sample_GUID[p]],
clinical[sample_type[h_sample_GUID[p]]]])
}
for (gp in 1:N_gp)
{
gp_resist[gp] ~ dbern(gp.prob)
}
for (v in 1:N_volunteers)
{
v_resist[v] ~ dbern(v.prob)
}
for (o in 1:N_outpatients)
{
o_resist[o] ~ dbern(o.prob)
}
# ------------------------
# Define the priors:
# Prior distribution for clin.effect (log-odds for each clinical class).
# Sample different clin.effect from normal distribution for each clinical
# class and convert to a probability).
#
# Since we're estimating exactly one parameter (the carriage effect),
# we can't use more than one thing to explain it... so we don't include a
# hyperparameter (e.g. mu or tau).
#
# log odds of a carriage sample = intercept + clin.effect[ncarr]
# log odds of a clinical sample = intercept - clin.effect[ncarr]
clin.effect[ncarr] ~ dnorm(0, 0.001)
clin.effect[nclin] <- -clin.effect[ncarr]
# Prior distribution for ward.effect
for (w in hosp_wards)
{
# for a random effect, report the estimated variance between wards
ward.effect[w] ~ dnorm(0, tau)
}
for (c in c(ncarr, nclin))
{
for (w in hosp_wards)
{
cw.effect[w,c] <- intercept + ward.effect[w] + clin.effect[c]
logit(cw.prob[w,c]) <- cw.effect[w,c]
}
}
# equivalent to clin.effect + ward.effect? intercept? tau? ----!!!!
gp.effect ~ dnorm(clin.effect[gp_clinical], tau)
logit(gp.prob) <- gp.effect
v.effect ~ dnorm(clin.effect[v_clinical], tau)
logit(v.prob) <- v.effect
o.effect ~ dnorm(clin.effect[o_clinical], tau)
logit(o.prob) <- o.effect
# ------------------------
# Prior value for intercept
intercept ~ dnorm(0, 0.001)
# Prior values for precision
tau ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd <- 1/sqrt(tau)
# Calculate odds
c.diff <- clin.effect[ncarr] - clin.effect[nclin]
odds.c <- exp(c.diff)
#monitor# full.pd, dic, deviance, intercept, clin.effect, gp.prob, v.prob, o.prob, odds.c, c.diff, sd
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.