#' ---
#' title: Jags models
#' date: Sep 2019
#' output:
#' html_document:
#' theme: paper
#' format: html_clean
#' code_folding: hide
#' highlight: pygments
#' ---
#' Last updated: `r Sys.time()`
#+ r setup, include=FALSE
knitr::opts_chunk$set(message=FALSE)
library(SpARKcarbapenam)
library(SpARK)
library(dplyr)
save_plots <- FALSE
#+
df <- METAdata %>%
merge(ATBdata %>%
dplyr::rename(GUID = UNIQUE_SPARK_ID)) %>%
dplyr::filter(used_MIC == "yes",
!grepl("NEG", GUID),
DATE_OF_BIRTH != "XXXX") %>%
dplyr::select(GUID, Category, GROUP, TYPE, Clinical, SPECIFIC_GROUP,
SAMPLE_TYPE, Interpretation, Antibiotic_name, Classification,
Phoenix_Organism) %>%
dplyr::filter(Interpretation == "R")
df_kleb <- df %>%
merge(KLEBdata %>%
dplyr::select(GUID, virulence_score, resistance_score))
labs <- cbind.data.frame(Classification = unique(df$Classification),
tag = substr(unique(df$Classification), 1, 3),
stringsAsFactors = F) %>%
dplyr::mutate(tag = dplyr::case_when(
Classification == "Aminoglycoside" ~ "Aminoglycoside",
Classification == "Cephalosporin" ~ "Cephalosporin",
Classification == "Carbapenem" ~ "Carbapenem",
Classification == "Fluoroquinolone" ~ "Fluoroquinolone",
Classification == "Penicillin (Penams)" ~ "Pen P",
Classification == "Trimethoprim/Sulfamethoxazole" ~ "Tri/Sul",
Classification == "Penicillin Combination" ~ "Pen C",
Classification == "Cephalosporin" ~ "Ceph",
T ~ tag))
# All samples -------------------------------------------------------------
# All antibiotic classes; human category
all_human <- df %>%
filter(Category == "human") %>%
merge(labs) %>%
mutate(Clinical = dplyr::case_when(
SPECIFIC_GROUP == "Pavia_citizen" ~ "no",
T ~ Clinical),
facet = dplyr::case_when(
SPECIFIC_GROUP == "Pavia_citizen" ~ "Volunteer\n(Carriage)",
SPECIFIC_GROUP == "Belgioioso" ~ "GP\n(Clinical)",
SPECIFIC_GROUP %in% c("Montescano", "Maugeri", "Santa_Margherita",
"San_Matteo") & Clinical == "yes" ~
"Hospital\n(Clinical)",
SPECIFIC_GROUP %in% c("Montescano", "Maugeri", "Santa_Margherita",
"San_Matteo") & Clinical == "no" ~
"Hospital\n(Carriage)",
SPECIFIC_GROUP %in% c("Montescano", "Maugeri", "Santa_Margherita",
"San_Matteo") & Clinical == "dontknow" ~
"Hospital\n(Don't know)"),
facet = factor(facet, levels = c("Hospital\n(Clinical)",
"Hospital\n(Carriage)",
"Hospital\n(Don't know)",
"GP\n(Clinical)",
"Volunteer\n(Carriage)")),
col = case_when(Classification == "Carbapenem" ~ "Carbapenem",
T ~ "Other")) %>%
group_by(tag, Antibiotic_name, facet, col) %>%
summarise(Count = n())
# All antibiotic classes; animal category
all_animal <- df %>%
filter(Category == "animal") %>%
merge(labs) %>%
mutate(facet = "animal",
col = case_when(Classification == "Carbapenem" ~ "Carbapenem",
T ~ "Other")) %>%
group_by(tag, Antibiotic_name, facet, col) %>%
summarise(Count = n())
# All antibiotic classes; livestock
all_livestock <- df %>%
filter(Category == "animal",
TYPE == "livestock") %>%
merge(labs) %>%
mutate(facet = "livestock",
col = case_when(Classification == "Carbapenem" ~ "Carbapenem",
T ~ "Other")) %>%
group_by(tag, Antibiotic_name, facet, col) %>%
summarise(Count = n())
# All antibiotic classes; other category
all_other <- df %>%
filter(Category == "other") %>%
merge(labs) %>%
mutate(facet = "other",
col = case_when(Classification == "Carbapenem" ~ "Carbapenem",
T ~ "Other")) %>%
group_by(tag, Antibiotic_name, facet, col) %>%
summarise(Count = n())
#' ## All antibiotic classes
#+ fig.height = 10, fig.width = 8
all_data <- rbind.data.frame(all_human, all_livestock,
all_animal, all_other) %>%
ggplot2::ggplot() + ggplot2::theme_bw() + ggplot2::coord_flip() +
ggplot2::facet_grid(tag~facet, scales = "free", space = "free_y") +
ggplot2::geom_bar(ggplot2::aes(x = Antibiotic_name, y = Count, fill = col),
stat = "identity", colour = "black") +
ggplot2::geom_text(ggplot2::aes(x = Antibiotic_name, y = Count, label = Count),
position = ggplot2::position_dodge(width = .9), hjust = -.2) +
ggplot2::scale_fill_manual(name = "", values = c("deeppink4", "gray66")) +
ggplot2::scale_y_continuous(expand = ggplot2::expansion(mult = c(0, .3))) +
ggplot2::theme(panel.spacing.y = ggplot2::unit(0,"lines"),
panel.border = ggplot2::element_rect(color = "grey60"),
strip.placement = "outside",
legend.position = "none") +
ggplot2::labs(x = "Antibiotic", y = "Number of resistant samples")
all_data
if(save_plots)
ggplot2::ggsave('alldata.pdf', all_data, width = 14, height = 12)
# Remove samples with carbapenem resistance -------------------------------
# Samples with carbapenem resistance
samples <- df %>%
dplyr::filter(Classification == "Carbapenem" ,
Interpretation == "R") %$%
GUID %>%
unique()
df_nocarb <- df %>%
dplyr::filter(!GUID %in% samples)
# All antibiotic classes except carbapenem; human category
nc_human <- df_nocarb %>%
filter(Category == "human") %>%
merge(labs) %>%
dplyr::mutate(Clinical = dplyr::case_when(
SPECIFIC_GROUP == "Pavia_citizen" ~ "no",
T ~ Clinical),
facet = dplyr::case_when(
SPECIFIC_GROUP == "Pavia_citizen" ~ "Volunteer\n(Carriage)",
SPECIFIC_GROUP == "Belgioioso" ~ "GP\n(Clinical)",
SPECIFIC_GROUP %in% c("Montescano", "Maugeri", "Santa_Margherita",
"San_Matteo") & Clinical == "yes" ~
"Hospital\n(Clinical)",
SPECIFIC_GROUP %in% c("Montescano", "Maugeri", "Santa_Margherita",
"San_Matteo") & Clinical == "no" ~
"Hospital\n(Carriage)",
SPECIFIC_GROUP %in% c("Montescano", "Maugeri", "Santa_Margherita",
"San_Matteo") & Clinical == "dontknow" ~
"Hospital\n(Don't know)"),
facet = factor(facet, levels = c("Hospital\n(Clinical)",
"Hospital\n(Carriage)",
"Hospital\n(Don't know)",
"GP\n(Clinical)",
"Volunteer\n(Carriage)")),
col = case_when(Classification == "Carbapenem" ~ "Carbapenem",
T ~ "Other")) %>%
group_by(tag, Antibiotic_name, facet, col) %>%
summarise(Count = n())
# All antibiotic classes except carbapenem; animal category
nc_animal <- df_nocarb %>%
filter(Category == "animal",
Classification != "Carbapenem") %>%
merge(labs) %>%
mutate(facet = "animal",
col = case_when(Classification == "Carbapenem" ~ "Carbapenem",
T ~ "Other")) %>%
group_by(tag, Antibiotic_name, facet, col) %>%
summarise(Count = n())
# All antibiotic classes except carbapenem; livestock
nc_livestock <- df_nocarb %>%
filter(Category == "animal",
TYPE == "livestock",
Classification != "Carbapenem") %>%
merge(labs) %>%
mutate(facet = "livestock",
col = case_when(Classification == "Carbapenem" ~ "Carbapenem",
T ~ "Other")) %>%
group_by(tag, Antibiotic_name, facet, col) %>%
summarise(Count = n())
# All antibiotic classes except carbapenem; other category
nc_other <- df_nocarb %>%
filter(Category == "other",
Classification != "Carbapenem") %>%
merge(labs) %>%
mutate(facet = "other",
col = case_when(Classification == "Carbapenem" ~ "Carbapenem",
T ~ "Other")) %>%
group_by(tag, Antibiotic_name, facet, col) %>%
summarise(Count = n())
#' ## All antibiotic classes except carbapenem
#+ fig.height = 10, fig.width = 8
nc_data <- rbind.data.frame(nc_human, nc_livestock,
nc_animal, nc_other) %>%
ggplot2::ggplot() + ggplot2::theme_bw() + ggplot2::coord_flip() +
ggplot2::facet_grid(tag~facet, scales = "free", space = "free_y") +
ggplot2::geom_bar(ggplot2::aes(x = Antibiotic_name, y = Count, fill = col),
stat = "identity", colour = "black", fill = "gray66") +
ggplot2::geom_text(ggplot2::aes(x = Antibiotic_name, y = Count, label = Count),
position = ggplot2::position_dodge(width = .9), hjust = -.2) +
ggplot2::scale_y_continuous(expand = ggplot2::expansion(mult = c(0, .3))) +
ggplot2::theme(panel.spacing.y = ggplot2::unit(0,"lines"),
panel.border = ggplot2::element_rect(color = "grey60"),
strip.placement = "outside",
legend.position = "none") +
ggplot2::labs(x = "Antibiotic", y = "Number of resistant samples")
nc_data
if(save_plots)
ggplot2::ggsave('ncdata.pdf', nc_data, width = 14, height = 12)
# Remove samples without carbapenem resistance ----------------------------
# Samples with carbapenem resistance
samples <- df %>%
dplyr::filter(Classification == "Carbapenem" ,
Interpretation == "R") %$%
GUID %>%
unique()
df_carb <- df %>%
dplyr::filter(GUID %in% samples)
# Samples with carbapenem resistance; human category
nc_human <- df_carb %>%
filter(Category == "human") %>%
merge(labs) %>%
dplyr::mutate(Clinical = dplyr::case_when(
SPECIFIC_GROUP == "Pavia_citizen" ~ "no",
T ~ Clinical),
facet = dplyr::case_when(
SPECIFIC_GROUP == "Pavia_citizen" ~ "Volunteer\n(Carriage)",
SPECIFIC_GROUP == "Belgioioso" ~ "GP\n(Clinical)",
SPECIFIC_GROUP %in% c("Montescano", "Maugeri", "Santa_Margherita",
"San_Matteo") & Clinical == "yes" ~
"Hospital\n(Clinical)",
SPECIFIC_GROUP %in% c("Montescano", "Maugeri", "Santa_Margherita",
"San_Matteo") & Clinical == "no" ~
"Hospital\n(Carriage)",
SPECIFIC_GROUP %in% c("Montescano", "Maugeri", "Santa_Margherita",
"San_Matteo") & Clinical == "dontknow" ~
"Hospital\n(Don't know)"),
facet = factor(facet, levels = c("Hospital\n(Clinical)",
"Hospital\n(Carriage)",
"Hospital\n(Don't know)",
"GP\n(Clinical)",
"Volunteer\n(Carriage)")),
col = case_when(Classification == "Carbapenem" ~ "Carbapenem",
T ~ "Other")) %>%
group_by(tag, Antibiotic_name, facet, col) %>%
summarise(Count = n())
# Samples with carbapenem resistance; animal category
nc_animal <- df_carb %>%
filter(Category == "animal",
Classification != "Carbapenem") %>%
merge(labs) %>%
mutate(facet = "animal",
col = case_when(Classification == "Carbapenem" ~ "Carbapenem",
T ~ "Other")) %>%
group_by(tag, Antibiotic_name, facet, col) %>%
summarise(Count = n())
# Samples with carbapenem resistance; livestock
nc_livestock <- df_carb %>%
filter(Category == "animal",
TYPE == "livestock",
Classification != "Carbapenem") %>%
merge(labs) %>%
mutate(facet = "livestock",
col = case_when(Classification == "Carbapenem" ~ "Carbapenem",
T ~ "Other")) %>%
group_by(tag, Antibiotic_name, facet, col) %>%
summarise(Count = n())
# Samples with carbapenem resistance; other category
nc_other <- df_carb %>%
filter(Category == "other",
Classification != "Carbapenem") %>%
merge(labs) %>%
mutate(facet = "other",
col = case_when(Classification == "Carbapenem" ~ "Carbapenem",
T ~ "Other")) %>%
group_by(tag, Antibiotic_name, facet, col) %>%
summarise(Count = n())
#' ## Samples with carbapenem resistance
#+ fig.height = 10, fig.width = 8
c_data <- rbind.data.frame(nc_human, nc_livestock,
nc_animal, nc_other) %>%
ggplot2::ggplot() + ggplot2::theme_bw() + ggplot2::coord_flip() +
ggplot2::facet_grid(tag~facet, scales = "free", space = "free_y") +
ggplot2::geom_bar(ggplot2::aes(x = Antibiotic_name, y = Count, fill = col),
stat = "identity", colour = "black") +
ggplot2::geom_text(ggplot2::aes(x = Antibiotic_name, y = Count, label = Count),
position = ggplot2::position_dodge(width = .9), hjust = -.2) +
ggplot2::scale_y_continuous(expand = ggplot2::expansion(mult = c(0, .3))) +
ggplot2::scale_fill_manual(name = "", values = c("deeppink4", "gray66")) +
ggplot2::theme(panel.spacing.y = ggplot2::unit(0,"lines"),
panel.border = ggplot2::element_rect(color = "grey60"),
strip.placement = "outside",
legend.position = "none") +
ggplot2::labs(x = "Antibiotic", y = "Number of resistant samples")
c_data
if(save_plots)
ggplot2::ggsave('cdata.pdf', c_data, width = 14, height = 12)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.