#
# simulation of FITTED model
#
# $Revision: 1.38 $ $Date: 2022/04/06 07:23:19 $
#
#
rmh.ppm <- function(model, start = NULL,
control = default.rmhcontrol(model, w=w),
...,
w = NULL, project=TRUE,
nsim=1, drop=TRUE, saveinfo=TRUE,
verbose=TRUE,
new.coef=NULL) {
verifyclass(model, "ppm")
check.1.integer(nsim)
stopifnot(nsim >= 0)
if(nsim == 0) return(simulationresult(list()))
argh <- list(...)
if(is.null(control)) {
control <- default.rmhcontrol(model, w=w)
} else {
control <- rmhcontrol(control)
}
# override
if(length(list(...)) > 0)
control <- update(control, ...)
# convert fitted model object to list of parameters for rmh.default
X <- rmhmodel(model, w=w, verbose=verbose, project=project, control=control,
new.coef=new.coef)
# set initial state
if(is.null(start)) {
datapattern <- data.ppm(model)
start <- rmhstart(n.start=datapattern$n)
}
# call rmh.default
# passing only arguments unrecognised by rmhcontrol
known <- names(argh) %in% names(formals(rmhcontrol.default))
fargs <- argh[!known]
Y <- do.call(rmh.default,
append(list(model=X, start=start, control=control,
nsim=nsim, drop=drop, saveinfo=saveinfo,
verbose=verbose),
fargs))
return(Y)
}
simulate.ppm <- function(object, nsim=1, ...,
singlerun=FALSE,
start = NULL,
control = default.rmhcontrol(object, w=w),
w = window,
window = NULL,
project=TRUE,
new.coef=NULL,
verbose=FALSE,
progress=(nsim > 1),
drop=FALSE) {
verifyclass(object, "ppm")
argh <- list(...)
check.1.integer(nsim)
stopifnot(nsim >= 0)
if(nsim == 0) return(simulationresult(list()))
starttime = proc.time()
# set up control parameters
if(missing(control) || is.null(control)) {
rcontr <- default.rmhcontrol(object, w=w)
} else {
rcontr <- rmhcontrol(control)
}
if(singlerun) {
# allow nsave, nburn to determine nrep
nsave <- resolve.1.default("nsave", list(...), as.list(rcontr),
.MatchNull=FALSE)
nburn <- resolve.1.default("nburn", list(...), as.list(rcontr),
list(nburn=nsave),
.MatchNull=FALSE)
if(!is.null(nsave)) {
nrep <- nburn + (nsim-1) * sum(nsave)
rcontr <- update(rcontr, nrep=nrep, nsave=nsave, nburn=nburn)
}
}
# other overrides
if(length(list(...)) > 0)
rcontr <- update(rcontr, ...)
# Set up model parameters for rmh
rmodel <- rmhmodel(object, w=w, verbose=FALSE, project=TRUE, control=rcontr,
new.coef=new.coef)
if(is.null(start)) {
datapattern <- data.ppm(object)
start <- rmhstart(n.start=datapattern$n)
}
rstart <- rmhstart(start)
#########
if(singlerun && nsim > 1) {
# //////////////////////////////////////////////////
# execute one long run and save every k-th iteration
if(is.null(rcontr$nsave)) {
# determine spacing between subsamples
if(!is.null(rcontr$nburn)) {
nsave <- max(1, with(rcontr, floor((nrep - nburn)/(nsim-1))))
} else {
# assume nburn = 2 * nsave
nsave <- max(1, with(rcontr, floor(nrep/(nsim+1))))
nburn <- 2 * nsave
}
rcontr <- update(rcontr, nsave=nsave, nburn=nburn)
}
# check nrep is enough
nrepmin <- with(rcontr, nburn + (nsim-1) * sum(nsave))
if(rcontr$nrep < nrepmin)
rcontr <- update(rcontr, nrep=nrepmin)
# OK, run it
if(progress) {
cat(paste("Generating", nsim, "simulated patterns in a single run ... "))
flush.console()
}
Y <- rmh(rmodel, rstart, rcontr, verbose=verbose)
if(progress)
cat("Done.\n")
# extract sampled states
out <- attr(Y, "saved")
nout <- length(out)
if(nout == nsim+1L && identical(names(out)[1], "Iteration_0")) {
## expected behaviour: first entry is initial state
out <- out[-1L]
} else if(nout != nsim) {
stop(paste("Internal error: wrong number of simulations generated:",
nout, "!=", nsim))
}
} else {
# //////////////////////////////////////////////////
# execute 'nsim' independent runs
out <- list()
# pre-digest arguments
rmhinfolist <- rmh(rmodel, rstart, rcontr, preponly=TRUE, verbose=verbose)
# go
if(nsim > 0) {
if(progress) {
cat(paste("Generating", nsim, "simulated",
ngettext(nsim, "pattern", "patterns"),
"..."))
flush.console()
}
# call rmh
# passing only arguments unrecognised by rmhcontrol
known <- names(argh) %in% names(formals(rmhcontrol.default))
fargs <- argh[!known]
rmhargs <- append(list(InfoList=rmhinfolist, verbose=verbose), fargs)
if(progress)
pstate <- list()
for(i in 1:nsim) {
out[[i]] <- do.call(rmhEngine, rmhargs)
if(progress) pstate <- progressreport(i, nsim, state=pstate)
}
}
}
out <- simulationresult(out, nsim, drop)
out <- timed(out, starttime=starttime)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.