#' Estimate F Distribution Parameters
#'
#' @family Parameter Estimation
#' @family F Distribution
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function will attempt to estimate the F distribution parameters
#' given some vector of values produced by `rf()`. The estimation method
#' is from the NIST Engineering Statistics Handbook.
#'
#' @param .x The vector of data to be passed to the function, where the data
#' comes from the `rf()` function.
#' @param .auto_gen_empirical This is a boolean value of TRUE/FALSE with default
#' set to TRUE. This will automatically create the `tidy_empirical()` output
#' for the `.x` parameter and use the `tidy_combine_distributions()`. The user
#' can then plot out the data using `$combined_data_tbl` from the function output.
#'
#' @examples
#' library(dplyr)
#' library(ggplot2)
#'
#' set.seed(123)
#' x <- rf(100, df1 = 5, df2 = 10, ncp = 1)
#' output <- util_f_param_estimate(x)
#'
#' output$parameter_tbl
#'
#' output$combined_data_tbl |>
#' tidy_combined_autoplot()
#'
#' @return
#' A tibble/list
#'
#' @export
#'
util_f_param_estimate <- function(.x, .auto_gen_empirical = TRUE) {
# Tidyeval ----
x_term <- as.numeric(.x)
n <- length(x_term)
minx <- min(as.numeric(x_term))
maxx <- max(as.numeric(x_term))
m <- mean(as.numeric(x_term))
s <- var(x_term)
# Checks ----
if (!inherits(x_term, "numeric")) {
rlang::abort(
message = "The '.x' parameter must be numeric.",
use_cli_format = TRUE
)
}
# NIST MME ----
m1 <- mean(x_term)
m2 <- mean(x_term^2)
m3 <- mean(x_term^3)
m4 <- mean(x_term^4)
b1 <- (m3 - m1 * m2) / (m2 - m1^2)
b2 <- (m4 - 4 * m1 * m3 + 6 * m1^2 * m2 - 3 * m1^4) / (m2 - m1^2)^2
df1_mme <- 2 * (2 * b2 - 3 * b1 - 6) / (b1 + 6)
df2_mme <- 4 + 2 * b1 * df1_mme / (df1_mme - 2)
ncp_mme <- (df1_mme * m1 - df1_mme + 2) / df2_mme
# Round
df1_mme <- ifelse(round(df1_mme, 3) <= 0, abs(round(df1_mme, 3)), round(df1_mme, 3))
df2_mme <- ifelse(round(df2_mme, 3) <= 0, abs(round(df2_mme, 3)), round(df2_mme, 3))
ncp_mme <- ifelse(round(ncp_mme, 3) <= 0, abs(round(ncp_mme, 3)), round(ncp_mme, 3))
# Negative Log Likelihood ----
# Negative log-likelihood function for the F-distribution
nll <- function(params) {
df1 <- params[1]
df2 <- params[2]
ncp <- params[3]
if (df1 <= 0 || df2 <= 0 || ncp <= 0) return(Inf) # return Inf if params are not valid
-sum(stats::df(x_term, df1, df2, ncp, log = TRUE))
}
# Initial parameter guesses
start_params <- c(df1 = 1, df2 = 1, ncp = 0)
# Use optim to minimize the negative log-likelihood
optim_res <- stats::optim(start_params, nll, method = "L-BFGS-B",
lower = c(1e-6, 1e-6, 1e-6))
# Return the estimated parameters
optim_df1 <- round(optim_res$par[[1]], 3)
optim_df2 <- round(optim_res$par[[2]], 3)
optim_ncp <- round(optim_res$par[[3]], 3)
# Return Tibble ----
if (.auto_gen_empirical) {
te <- tidy_empirical(.x = x_term)
td_mme <- tidy_f(.n = n,
.df1 = df1_mme, .df2 = df2_mme, .ncp = ncp_mme)
td_optim <- tidy_f(.n = n,
.df1 = optim_df1, .df2 = optim_df2, .ncp = optim_ncp)
combined_tbl <- tidy_combine_distributions(te, td_mme, td_optim)
}
ret <- dplyr::tibble(
dist_type = rep("F Distribution", 2),
samp_size = rep(n, 2),
min = minx,
max = maxx,
mean = m,
variance = s,
method = c("MME", "MLE"),
df1_est = c(df1_mme, optim_df1),
df2_est = c(df2_mme, optim_df2),
ncp_est = c(ncp_mme, optim_ncp)
)
# Return ----
attr(ret, "tibble_type") <- "parameter_estimation"
attr(ret, "family") <- "f_distribution"
attr(ret, "x_term") <- .x
attr(ret, "n") <- length(x_term)
if (.auto_gen_empirical) {
output <- list(
combined_data_tbl = combined_tbl,
parameter_tbl = ret
)
} else {
output <- list(
parameter_tbl = ret
)
}
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.