#' Estimate t Distribution Parameters
#'
#' @family Parameter Estimation
#' @family t Distribution
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function will attempt to estimate the t distribution parameters
#' given some vector of values produced by `rt()`. The estimation method
#' uses both method of moments and maximum likelihood estimation.
#'
#' @param .x The vector of data to be passed to the function, where the data
#' comes from the `rt()` function.
#' @param .auto_gen_empirical This is a boolean value of TRUE/FALSE with default
#' set to TRUE. This will automatically create the `tidy_empirical()` output
#' for the `.x` parameter and use the `tidy_combine_distributions()`. The user
#' can then plot out the data using `$combined_data_tbl` from the function output.
#'
#' @examples
#' library(dplyr)
#' library(ggplot2)
#'
#' set.seed(123)
#' x <- rt(100, df = 10, ncp = 0.5)
#' output <- util_t_param_estimate(x)
#'
#' output$parameter_tbl
#'
#' output$combined_data_tbl |>
#' tidy_combined_autoplot()
#'
#' @return
#' A tibble/list
#'
#' @export
#'
util_t_param_estimate <- function(.x, .auto_gen_empirical = TRUE) {
# Tidyeval ----
x_term <- as.numeric(.x)
n <- length(x_term)
# Checks ----
if (!inherits(x_term, "numeric")) {
rlang::abort(
message = "The '.x' parameter must be numeric.",
use_cli_format = TRUE
)
}
# Method of Moments Estimation ----
m <- mean(x_term)
s <- sd(x_term)
df_mme <- n * s^2 / (n-1)
# Initial parameter guesses for MLE
start_params <- c(df = df_mme, ncp = m)
# Negative Log Likelihood Function for the t-distribution
nll <- function(params) {
df <- params[1]
ncp <- params[2]
if (df <= 0) return(Inf) # Ensure df is positive
-sum(stats::dt(x_term, df, ncp, log = TRUE))
}
# Minimize Negative Log Likelihood
optim_res <- stats::optim(start_params, nll, method = "CG") |>
suppressWarnings()
# Estimated Parameters
optim_df <- round(optim_res$par[1], 3) |> unname()
optim_ncp <- round(optim_res$par[2], 3) |> unname()
# Return Tibble ----
if (.auto_gen_empirical) {
te <- tidy_empirical(.x = x_term)
td_mme <- tidy_t(.n = n, .df = round(df_mme, 3), .ncp = round(m, 3))
td_optim <- tidy_t(.n = n, .df = round(optim_df, 3), .ncp = round(optim_ncp, 3))
combined_tbl <- tidy_combine_distributions(te, td_mme, td_optim)
}
ret <- dplyr::tibble(
dist_type = rep("T Distribution", 2),
samp_size = rep(n, 2),
mean = m,
variance = s^2,
method = c("MME", "MLE"),
df_est = c(df_mme, optim_df),
ncp_est = c(m, optim_ncp)
)
# Return ----
attr(ret, "tibble_type") <- "parameter_estimation"
attr(ret, "family") <- "t_distribution"
attr(ret, "x_term") <- .x
attr(ret, "n") <- length(x_term)
if (.auto_gen_empirical) {
output <- list(
combined_data_tbl = combined_tbl,
parameter_tbl = ret
)
} else {
output <- list(
parameter_tbl = ret
)
}
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.