#' Estimate Zero Truncated Binomial Parameters
#'
#' @family Parameter Estimation
#' @family Binomial
#' @family Zero Truncated Distribution
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function will attempt to estimate the zero truncated
#' binomial size and prob parameters given some vector of values.
#'
#' @description The function will return a list output by default, and if the parameter
#' `.auto_gen_empirical` is set to `TRUE` then the empirical data given to the
#' parameter `.x` will be run through the `tidy_empirical()` function and combined
#' with the estimated binomial data.
#'
#' One method of estimating the parameters is done via:
#' - MLE via \code{\link[stats]{optim}} function.
#'
#' @param .x The vector of data to be passed to the function.
#' @param .auto_gen_empirical This is a boolean value of TRUE/FALSE with default
#' set to TRUE. This will automatically create the `tidy_empirical()` output
#' for the `.x` parameter and use the `tidy_combine_distributions()`. The user
#' can then plot out the data using `$combined_data_tbl` from the function output.
#'
#' @examples
#' library(dplyr)
#' library(ggplot2)
#'
#' x <- as.integer(mtcars$mpg)
#' output <- util_zero_truncated_binomial_param_estimate(x)
#'
#' output$parameter_tbl
#'
#' output$combined_data_tbl |>
#' tidy_combined_autoplot()
#'
#' set.seed(123)
#' t <- tidy_zero_truncated_binomial(100, 10, .1)[["y"]]
#' util_zero_truncated_binomial_param_estimate(t)$parameter_tbl
#'
#' @return
#' A tibble/list
#'
#' @name util_zero_truncated_binomial_param_estimate
NULL
#' @export
#' @rdname util_zero_truncated_binomial_param_estimate
util_zero_truncated_binomial_param_estimate <- function(.x, .auto_gen_empirical = TRUE) {
# Check if actuar library is installed
if (!requireNamespace("actuar", quietly = TRUE)) {
stop("The 'actuar' package is needed for this function. Please install it with: install.packages('actuar')")
}
# Tidyeval ----
x_term <- as.numeric(.x)
sum_x <- sum(x_term, na.rm = TRUE)
minx <- min(x_term)
maxx <- max(x_term)
m <- mean(x_term, na.rm = TRUE)
n <- length(x_term)
# Negative log-likelihood function for zero-truncated binomial distribution
nll_func <- function(par) {
n <- par[1]
p <- par[2]
if (n <= 0 || p <= 0 || p >= 1) {
return(-Inf)
}
-sum(actuar::dztbinom(x_term, size = n, prob = p, log = TRUE))
}
# Initial parameter guesses
initial_params <- c(size = max(x_term), prob = 0.5) # Adjust based on your data
# Optimization using optim()
optim_result <- stats::optim(
par = initial_params,
fn = nll_func
) |>
suppressWarnings()
# Extract estimated parameters
mle_size <- optim_result$par[1]
mle_prob <- optim_result$par[2]
mle_msg <- optim_result$message
# Create output tibble
ret <- dplyr::tibble(
dist_type = "Zero-Truncated Binomial",
samp_size = n,
min = minx,
max = maxx,
mean = m,
method = "MLE_Optim",
size = mle_size,
prob = mle_prob,
message = mle_msg
)
# Attach attributes
attr(ret, "tibble_type") <- "parameter_estimation"
attr(ret, "family") <- "zero_truncated_binomial"
attr(ret, "x_term") <- .x
attr(ret, "n") <- n
if (.auto_gen_empirical) {
# Generate empirical data
# Assuming tidy_empirical and tidy_combine_distributions functions exist
te <- tidy_empirical(.x = .x)
td <- tidy_zero_truncated_binomial(
.n = n,
.size = round(mle_size, 3),
.prob = round(mle_prob, 3)
)
combined_tbl <- tidy_combine_distributions(te, td)
output <- list(
combined_data_tbl = combined_tbl,
parameter_tbl = ret
)
} else {
output <- list(
parameter_tbl = ret
)
}
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.