#' Tidy Randomly Generated Gaussian Distribution Tibble
#'
#' @family Continuous Distribution
#' @family Gaussian
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function uses the underlying `stats::rnorm()`, `stats::pnorm()`,
#' and `stats::qnorm()` functions to generate data from the given parameters. For
#' more information please see [stats::rnorm()]
#'
#' @description This function will generate `n` random points from a Gaussian
#' distribution with a user provided, `.mean`, `.sd` - standard deviation and number of
#' random simulations to be produced. The function returns a tibble with the
#' simulation number column the x column which corresponds to the n randomly
#' generated points, the `dnorm`, `pnorm` and `qnorm` data points as well.
#'
#' The data is returned un-grouped.
#'
#' The columns that are output are:
#'
#' - `sim_number` The current simulation number.
#' - `x` The current value of `n` for the current simulation.
#' - `y` The randomly generated data point.
#' - `dx` The `x` value from the [stats::density()] function.
#' - `dy` The `y` value from the [stats::density()] function.
#' - `p` The values from the resulting p_ function of the distribution family.
#' - `q` The values from the resulting q_ function of the distribution family.
#'
#' @param .n The number of randomly generated points you want.
#' @param .mean The mean of the randomly generated data.
#' @param .sd The standard deviation of the randomly generated data.
#' @param .num_sims The number of randomly generated simulations you want.
#' @param .return_tibble A logical value indicating whether to return the result
#' as a tibble. Default is TRUE.
#'
#' @examples
#' tidy_normal()
#'
#' @return
#' A tibble of randomly generated data.
#'
#' @name tidy_normal
NULL
#' @export
#' @rdname tidy_normal
tidy_normal <- function(.n = 50, .mean = 0, .sd = 1, .num_sims = 1,
.return_tibble = TRUE) {
# Tidyeval ----
n <- as.integer(.n)
num_sims <- as.integer(.num_sims)
mu <- as.numeric(.mean)
std <- as.numeric(.sd)
ret_tbl <- as.logical(.return_tibble)
# Checks ----
if (!is.integer(n) | n < 0) {
rlang::abort(
"The parameters '.n' must be of class integer. Please pass a whole
number like 50 or 100. It must be greater than 0."
)
}
if (!is.integer(num_sims) | num_sims < 0) {
rlang::abort(
"The parameter `.num_sims' must be of class integer. Please pass a
whole number like 50 or 100. It must be greater than 0."
)
}
if (!is.numeric(mu)) {
rlang::abort(
"The parameters of '.mean' and '.sd' must be of class numeric.
Please pass a numer like 1 or 1.1 etc."
)
}
if (!is.numeric(std)) {
rlang::abort(
"The parameters of '.mean' and '.sd' must be of class numeric.
Please pass a numer like 1 or 1.1 etc."
)
}
x <- seq(1, num_sims, 1)
# ps <- seq(-n, n - 1, 2)
qs <- seq(0, 1, (1 / (n - 1)))
ps <- qs
# Create a data.table with one row per simulation
df <- data.table::CJ(sim_number = factor(1:num_sims), x = 1:n)
# Group the data by sim_number and add columns for x and y
df[ , y := stats::rnorm(n = .N, mean = mu, sd = std)]
# Compute the density of the y values and add columns for dx and dy
df[, c("dx", "dy") := density(y, n = n)[c("x", "y")], by = sim_number]
# Compute the p-values for the y values and add a column for p
df[, p := stats::pnorm(y, mean = mu, sd = std)]
# Compute the q-values for the p-values and add a column for q
df[, q := stats::qnorm(p, mean = mu, sd = std)]
if(.return_tibble){
df <- dplyr::as_tibble(df)
} else {
data.table::setkey(df, NULL)
}
# Create a tibble with the parameter grid
param_grid <- dplyr::tibble(.mean, .sd)
# Attach descriptive attributes to tibble
attr(df, "distribution_family_type") <- "continuous"
attr(df, ".mean") <- .mean
attr(df, ".sd") <- .sd
attr(df, ".n") <- .n
attr(df, ".num_sims") <- .num_sims
attr(df, ".ret_tbl") <- .return_tibble
attr(df, "tibble_type") <- "tidy_gaussian"
attr(df, "ps") <- ps
attr(df, "qs") <- qs
attr(df, "param_grid") <- param_grid
attr(df, "param_grid_txt") <- paste0(
"c(",
paste(param_grid[, names(param_grid)], collapse = ", "),
")"
)
attr(df, "dist_with_params") <- paste0(
"Gaussian",
" ",
paste0(
"c(",
paste(param_grid[, names(param_grid)], collapse = ", "),
")"
)
)
# Return final result as function output
return(df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.