#' Calculate Akaike Information Criterion (AIC) for Normal Distribution
#'
#' This function calculates the Akaike Information Criterion (AIC) for a normal distribution fitted to the provided data.
#'
#' @family Utility
#' @author Steven P. Sanderson II, MPH
#'
#' @description
#' This function estimates the parameters of a normal distribution from the provided data using maximum likelihood estimation,
#' and then calculates the AIC value based on the fitted distribution.
#'
#' @param .x A numeric vector containing the data to be fitted to a normal distribution.
#'
#' @examples
#' # Example 1: Calculate AIC for a sample dataset
#' set.seed(123)
#' data <- rnorm(30)
#' util_normal_aic(data)
#'
#' @return
#' The AIC value calculated based on the fitted normal distribution to the provided data.
#'
#' @name util_normal_aic
#'
#' @export
#' @rdname util_normal_aic
util_normal_aic <- function(.x) {
# Tidyeval
x <- as.numeric(.x)
# Get parameters
pe <- TidyDensity::util_normal_param_estimate(x)$parameter_tbl |> utils::head(1)
# Negative log-likelihood function for normal distribution
neg_log_lik_norm <- function(par, data) {
mu <- par[1]
sigma <- par[2]
n <- length(data)
-sum(stats::dnorm(data, mean = mu, sd = sigma, log = TRUE))
}
# Fit normal distribution to population data (rnorm)
fit_norm <- stats::optim(
c(pe$mu, pe$stan_dev),
neg_log_lik_norm,
data = x
)
# Extract log-likelihoods and number of parameters
logLik_norm <- -fit_norm$value
k_norm <- 2 # Number of parameters for normal distribution (mu and sigma)
# Calculate AIC
AIC_norm <- 2 * k_norm - 2 * logLik_norm
# Return
return(AIC_norm)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.