#' Boilerplate Workflow
#'
#' @family Boiler_Plate
#' @family glmnet
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This uses `parsnip::linear_reg()` and sets the `engine` to `glmnet`
#'
#' @seealso \url{https://parsnip.tidymodels.org/reference/linear_reg.html}
#'
#' @description This is a boilerplate function to create automatically the following:
#' - recipe
#' - model specification
#' - workflow
#' - tuned model (grid ect)
#' - calibration tibble and plot
#'
#' @param .data The data being passed to the function. The time-series object.
#' @param .date_col The column that holds the datetime.
#' @param .value_col The column that has the value
#' @param .formula The formula that is passed to the recipe like `value ~ .`
#' @param .rsamp_obj The rsample splits object
#' @param .prefix Default is `ts_glmnet`
#' @param .tune Defaults to TRUE, this creates a tuning grid and tuned model.
#' @param .grid_size If `.tune` is TRUE then the `.grid_size` is the size of the
#' tuning grid.
#' @param .num_cores How many cores do you want to use. Default is 1
#' @param .cv_assess How many observations for assess. See [timetk::time_series_cv()]
#' @param .cv_skip How many observations to skip. See [timetk::time_series_cv()]
#' @param .cv_slice_limit How many slices to return. See [timetk::time_series_cv()]
#' @param .best_metric Default is "rmse". See [modeltime::default_forecast_accuracy_metric_set()]
#' @param .bootstrap_final Not yet implemented.
#'
#' @examples
#' \donttest{
#' library(dplyr)
#' library(timetk)
#' library(modeltime)
#' library(glmnet)
#'
#' data <- AirPassengers %>%
#' ts_to_tbl() %>%
#' select(-index)
#'
#' splits <- time_series_split(
#' data
#' , date_col
#' , assess = 12
#' , skip = 3
#' , cumulative = TRUE
#' )
#'
#' ts_glmnet <- ts_auto_glmnet(
#' .data = data,
#' .num_cores = 2,
#' .date_col = date_col,
#' .value_col = value,
#' .rsamp_obj = splits,
#' .formula = value ~ .,
#' .grid_size = 5,
#' .tune = FALSE
#' )
#'
#' ts_glmnet$recipe_info
#' }
#'
#' @return
#' A list
#' @name ts_auto_glmnet
NULL
#' @export
#' @rdname ts_auto_glmnet
ts_auto_glmnet <- function(.data, .date_col, .value_col, .formula, .rsamp_obj,
.prefix = "ts_glmnet", .tune = TRUE, .grid_size = 10,
.num_cores = 1, .cv_assess = 12, .cv_skip = 3,
.cv_slice_limit = 6, .best_metric = "rmse",
.bootstrap_final = FALSE){
# Tidyeval ----
date_col_var_expr <- rlang::enquo(.date_col)
value_col_var_expr <- rlang::enquo(.value_col)
sampling_object <- .rsamp_obj
# Cross Validation
cv_assess = as.numeric(.cv_assess)
cv_skip = as.numeric(.cv_skip)
cv_slice = as.numeric(.cv_slice_limit)
# Tuning Grid
grid_size <- as.numeric(.grid_size)
num_cores <- as.numeric(.num_cores)
best_metric <- as.character(.best_metric)
# Data and splits
splits <- .rsamp_obj
data_tbl <- dplyr::as_tibble(.data)
# Checks ----
if (rlang::quo_is_missing(date_col_var_expr)){
rlang::abort(
message = "'.date_col' must be supplied.",
use_cli_format = TRUE
)
}
if (rlang::quo_is_missing(value_col_var_expr)){
rlang::abort(
message = "'.value_col' must be supplied.",
use_cli_format = TRUE
)
}
if (!inherits(x = splits, what = "rsplit")){
rlang::abort(
message = "'.rsamp_obj' must be have class rsplit, use the rsample package.",
use_cli_format = TRUE
)
}
# Recipe ----
# Get the initial recipe call
recipe_call <- get_recipe_call(match.call())
rec_syntax <- paste0(.prefix, "_recipe") %>%
assign_value(!!recipe_call)
rec_obj <- recipes::recipe(formula = .formula, data = data_tbl)
rec_obj <- rec_obj %>%
timetk::step_timeseries_signature({{date_col_var_expr}}) %>%
#timetk::step_holiday_signature({{date_col_var_expr}}) %>%
recipes::step_novel(recipes::all_nominal_predictors()) %>%
recipes::step_mutate_at(tidyselect::vars_select_helpers$where(is.character)
, fn = ~ as.factor(.)) %>%
#recipes::step_rm({{date_col_var_expr}}) %>%
recipes::step_mutate({{date_col_var_expr}} := as.numeric({{date_col_var_expr}})) %>%
recipes::step_dummy(recipes::all_nominal(), one_hot = TRUE) %>%
recipes::step_zv(recipes::all_predictors(), -date_col_index.num) %>%
recipes::step_normalize(recipes::all_numeric_predictors(), -date_col_index.num)
# Tune/Spec ----
if (.tune){
model_spec <- parsnip::linear_reg(
penalty = tune::tune(),
mixture = tune::tune(),
mode = "regression",
engine = "glmnet"
)
} else {
model_spec <- parsnip::linear_reg(
mode = "regression",
engine = "glmnet",
penalty = double(1)
)
}
# Workflow ----
wflw <- workflows::workflow() %>%
workflows::add_recipe(rec_obj) %>%
workflows::add_model(model_spec)
# Tuning Grid ----
if (.tune){
# Start parallel backend
modeltime::parallel_start(num_cores)
tuning_grid_spec <- tidyr::crossing(
penalty = 10^seq(-6, -1, length.out = 20),
mixture = c(0.05,0.2,0.4,0.6,0.8,1)
) %>%
dplyr::slice_sample(n = grid_size)
# Make TS CV ----
tscv <- timetk::time_series_cv(
data = rsample::training(splits),
date_var = {{date_col_var_expr}},
cumulative = TRUE,
assess = cv_assess,
skip = cv_skip,
slice_limit = cv_slice
)
# Tune the workflow
tuned_results <- wflw %>%
tune::tune_grid(
resamples = tscv,
grid = tuning_grid_spec,
metrics = modeltime::default_forecast_accuracy_metric_set()
)
# Get the best result set by a specified metric
best_result_set <- tuned_results %>%
tune::show_best(metric = best_metric, n = 1)
# Plot results
tune_results_plt <- tuned_results %>%
tune::autoplot() +
ggplot2::theme_minimal() +
ggplot2::geom_smooth(se = FALSE)
# Make final workflow
wflw_fit <- wflw %>%
tune::finalize_workflow(
tuned_results %>%
tune::show_best(metric = best_metric, n = 1)
) %>%
parsnip::fit(rsample::training(splits))
# Stop parallel backend
modeltime::parallel_stop()
} else {
wflw_fit <- wflw %>%
parsnip::fit(rsample::training(splits))
}
# Calibrate and Plot ----
cap <- healthyR.ts::calibrate_and_plot(
wflw_fit,
.splits_obj = splits,
.data = data_tbl,
.interactive = TRUE,
.print_info = FALSE
)
# Return ----
output <- list(
recipe_info = list(
recipe_call = recipe_call,
recipe_syntax = rec_syntax,
rec_obj = rec_obj
),
model_info = list(
model_spec = model_spec,
wflw = wflw,
fitted_wflw = wflw_fit,
was_tuned = ifelse(.tune, "tuned", "not_tuned")
),
model_calibration = list(
plot = cap$plot,
calibration_tbl = cap$calibration_tbl,
model_accuracy = cap$model_accuracy
)
)
if (.tune){
output$tuned_info = list(
tuning_grid = tuning_grid_spec,
tscv = tscv,
tuned_results = tuned_results,
grid_size = grid_size,
best_metric = best_metric,
best_result_set = best_result_set,
tuning_grid_plot = tune_results_plt,
plotly_grid_plot = plotly::ggplotly(tune_results_plt)
)
}
# Add attributes
attr(output, ".tune") <- .tune
attr(output, ".grid_size") <- .grid_size
attr(output, ".cv_assess") <- .cv_assess
attr(output, ".cv_skip") <- .cv_skip
attr(output, ".cv_slice_limit") <- .cv_slice_limit
attr(output, ".best_metric") <- .best_metric
attr(output, ".bootstrap_final") <- .bootstrap_final
attr(output, ".mode") <- "regression"
attr(output, ".parsnip_engine") <- "glmnet"
attr(output, ".function_family") <- "boilerplate"
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.