## Dynare solution
params <- list( share = .86, gamma = 8, P1.bar=1, P2.bar=1, betta=.99,
rho=diag(rep(.9,4)), sig.eps=diag(c(.01,.01, .005, .005)^2),
eta=2, theta=.05 )
params$rho[2,1] <- params$rho[1,2] <- .025
params$sig.eps[2,1] <- params$sig.eps[1,2] <- .005 ^ 2
# Add non-sphericality
baseline <- mod.gen(params, check=FALSE)
# Extract things from baseline
upper <- baseline$ds.sol$upper
lower <- baseline$ds.sol$lower
n.endog <- ncol(baseline$ds.sol$coeff)
n.exog <- nrow(baseline$ds.sol$coeff) - n.endog - 1
n.cont <- ncol(baseline$ds.sol$coeff.cont)
endog.init <- tail(baseline$ds.sol$ys, n.endog)
exog.names <- c('A1','A2', 'P11', 'P22')
endog.names <- c( 'B11', 'B22' )
cont.names <- c( 'C1', 'C2', 'R_1', 'R_2', 'X11', 'X22', 'X12', 'X21',
'P1', 'P2', 'P12', 'P21', 'E', 'Q' )
fwd.vars <- c('B11', 'E', 'R_1', 'R_2')
## Set global solution options
opt <- list( lags=1, n.exog=n.exog, n.endog=n.endog, n.cont=n.cont, N=1, cheby=FALSE,
upper = upper, lower=lower, quad=TRUE, n.quad=3, burn=1000,
kappa=25, n.sim=10000, eps = 1.0, delta=.02, endog.init=endog.init,
c.iter=100, c.tol=1e-07, c.gain=.8,
k.iter=20, k.tol=1e-07, k.gain=.4,
n.iter=2, n.tol=1e-05, n.gain=.3,
tol=1e-05, iter=5, model='irbc',
sr=TRUE, adapt.gain=TRUE, adapt.exp=15, image=TRUE,
exog.names=exog.names, endog.names=endog.names,
cont.names=cont.names, fwd.vars=fwd.vars,
sym.reg=FALSE, n.fwd=4, ys=baseline$ds.sol$ys, mono="m1" )
baseline.sol <- list( params=params, opt=opt,
coeff=baseline$ds.sol$coeff,
coeff.cont=baseline$ds.sol$coeff.cont )
## Linear solution
l.sym.ave <- list( ave=c(1), sym=list(c(2,3),c(4,5),c(6,7) ) )
l.pairs <- list( c(1,2) )
l.pairs.cont <- list( c(1,2), c(3,4), c(5,6), c(7,8), c(9,10), c(11,12) )
sol.1 <- sol.irbc.iterate( baseline$ds.sol$coeff, opt, params,
baseline$ds.sol$coeff.cont )
sol.1.sym <- list(
coeff=m.sym.ave.pair( sol.1$coeff, l.sym.ave, l.pairs ),
coeff.cont=m.sym.ave.pair( sol.1$coeff.cont, l.sym.ave, l.pairs.cont ),
opt=opt, params=params )
# Ex post regularization
## Simulations
n.sim <- 100000
baseline.sol <- list( params=params, opt=sol.1$opt,
coeff=baseline$ds.sol$coeff,
coeff.cont=baseline$ds.sol$coeff.cont )
sim.baseline <- sim.sol( baseline.sol, n.sim )
sim.exog <- sim.baseline[,1:n.exog]
sim.sol.1 <- sim.sol( sol.1, n.sim, sim.exog )
sim.sol.1.sym <- sim.sol( sol.1.sym, n.sim, sim.exog )
## Errors
extra.args <- list( n.fwd=opt$n.fwd, y1.ss=opt$ys['Y1'] )
baseline.err <- sim.err( sim.baseline, baseline.sol, extra.args )
err.sol.1 <- sim.err( sim.sol.1, sol.1, extra.args )
err.sol.1.sym <- sim.err( sim.sol.1.sym, sol.1.sym, extra.args )
## Diagnsotics
par.init <- par()
par(mfrow=c(2,1), mai = c(.5, 0.5, 0.3, 0.1))
# Settings
l.err <- list( Local=baseline.err, Global1=err.sol.1 )
barplot(t(sapply( l.err, function(x) apply(abs(x), 2, mean) )),
beside=TRUE, main="Ave abs err")
barplot(t(sapply( l.err, function(x) apply(x, 2, mean) )),
beside=TRUE, main="Ave err")
# Baseline + global linear
# barplot(apply(abs(err.sol.1.sym), 2, mean), main="Ave abs err")
# barplot(apply((err.sol.1.sym), 2, mean), main="Ave err")
# # Symmetric gloabl linear - it pretty bad
par(par.init)
# Outputs
l.sim <- list( local=sim.baseline, global.1=sim.sol.1 ) #, global.2=sim.sol.2,
# global.1.0=sim.sol.1.0, global.2.0=sim.sol.2.0 )
bs.log <- sapply( l.sim,
function(sim) cor( diff(sim[,'C1']-sim[,'C2']), diff(sim[,'Q']) ) )
uip.coeff <- sapply( l.sim,
function(sim) lm( diff(sim[,'E']) ~ (sim[,'R_1']-sim[,'R_2'])[-n.sim] )$coeff[2] )
names(uip.coeff) <- names(bs.log)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.