library(tidyverse)
library(EBImage)
library(ShoeScrubR)
img_output_dir <- "~/Projects/CSAFE/2019-this_is_us/images/shoes/longitudinal/"
lss_dir <- "/lss/research/csafe-shoeprints/ShoeImagingPermanent"
# For a bunch of images...
full_imglist <- list.files("/lss/research/csafe-shoeprints/ShoeImagingPermanent/",
pattern = "0[01]\\d{4}[RL]_\\d{8}_5_1_1", full.names = T)
dir <- "/tmp/film-prints"
if (!dir.exists(dir)) dir.create(dir)
file.copy(full_imglist, file.path(dir, basename(full_imglist)))
imglist <- file.path(dir, basename(full_imglist))
shoe_info <- read.csv("~/Projects/CSAFE/2018_Longitudinal_Shoe_Project/Clean_Data/shoe-info.csv") %>%
filter(ShoeID %in% as.numeric(str_sub(basename(imglist), 1, 3))) %>%
select(ShoeID, Brand, Size) %>%
mutate(Size = str_remove(Size, "[ MW]") %>% parse_number()) %>%
crossing(tibble(Mask_foot = c("R", "L"), Shoe_foot = c("L", "R"))) %>%
mutate(mask = purrr::pmap(list(Brand, Size, Mask_foot, ppi = 300), shoe_mask))
scan_info <- tibble(
file = imglist,
ShoeID = str_extract(basename(file), "^\\d{3}") %>% parse_integer(),
Shoe_foot = str_extract(basename(file), "\\d{6}[RL]") %>% str_remove_all("\\d"),
date = str_extract(basename(file), "\\d{8}") %>% parse_date(format = "%Y%m%d")
) %>%
left_join(select(shoe_info, ShoeID, Brand, Size, Shoe_foot)) %>%
group_by(Shoe_foot, Brand) %>%
sample_n(5) %>%
ungroup() %>%
group_by(ShoeID, Shoe_foot) %>%
arrange(desc(date)) %>%
filter(row_number() == 1) %>%
ungroup() %>%
mutate(
img = purrr::map(file, EBImage::readImage, all = F),
img = purrr::map(img, EBImage::channel, "luminance"),
im_dim = purrr::map(img, dim)
)
img <- scan_info$img[[2]]
img10 <- img_resize(img, w = floor(dim(img)[1]/10), h = floor(dim(img)[2]/10))
img20 <- img_resize(img, w = floor(dim(img)[1]/20), h = floor(dim(img)[2]/20))
iem20 <- mixtools::normalmixEM(as.numeric(img20), k = 2)
iem20$posterior
img20_post <- img20
img20_post[1:length(img20)] <- iem20$posterior[,1]
plot(img20_post)
iem10 <- mixtools::normalmixEM(as.numeric(img10), k = 2)
img10_post <- img10
img10_post[1:length(img10)] <- iem10$posterior[,1]
plot(img10_post)
dnorm(seq(0, 1, .01), mean = iem10$mu[1], sd = iem10$sigma[1])
mapply(function(a, b) dnorm(seq(0, 1, .001), mean = a, sd = b), iem10$mu, iem10$sigma) %>%
apply(1, which.max) %>%
(function(x) seq(0, 1, .001)[min(which(x == 2))])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.