fit_simple_model <- function(W,
B_fixed_at_zero = FALSE,
reweight = FALSE){
n <- nrow(W)
J <- ncol(W)
if(B_fixed_at_zero){
B_fixed_indices <- matrix(TRUE,nrow = 1, ncol = J)
}else{
B_fixed_indices <- matrix(
c(rep(FALSE, J - 1),TRUE),nrow = 1, ncol = J)
}
if(reweight){
criterion <- "reweighted_Poisson"
} else{
criterion <- "Poisson"
}
fitted_model <- estimate_parameters(W = W,
X = matrix(1, nrow = n,ncol = 1),
Z = matrix(1, nrow = n, ncol = 1),
P = matrix(1/J,nrow = 1, ncol = J),
P_fixed_indices = matrix(TRUE, nrow = 1, ncol = J),
X_tilde = matrix(0,nrow = 1, ncol = 1),
Z_tilde = matrix(0,nrow = n, ncol = 1),
Z_tilde_gamma_cols = 1,
P_tilde = matrix(1/J,nrow = 1, ncol = J),
P_tilde_fixed_indices = matrix(TRUE, nrow = 1, ncol = J),
gammas = apply(W,1,function(x) log(sum(x))),
gammas_fixed_indices = rep(FALSE, n),
B = matrix(0, ncol = J, nrow = 1),
B_fixed_indices = B_fixed_indices,
gamma_tilde = matrix(0,ncol = 1, nrow = 1),
gamma_tilde_fixed_indices = matrix(TRUE,
ncol = 1, nrow = 1),
alpha_tilde = NULL,
Z_tilde_list = NULL,
barrier_t = 1, #starting value of reciprocal barrier penalty coef.
barrier_scale = 10, #increments for value of barrier penalty
max_barrier = 1e12, #maximum value of barrier_t
initial_conv_tol = 1000,
final_conv_tol = 0.1,
constraint_tolerance = 1e-10,
hessian_regularization = 0.01,
criterion = criterion,
profile_P = TRUE,
profiling_maxit = 25,
wts = NULL,
verbose = FALSE,
bootstrap_failure_cutoff = NULL)
return(fitted_model)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.