# File R/marg_cond_sim.R in package ergm.multi, part of the
# Statnet suite of packages for network analysis, https://statnet.org .
#
# This software is distributed under the GPL-3 license. It is free,
# open source, and has the attribution requirements (GPL Section 7) at
# https://statnet.org/attribution .
#
# Copyright 2003-2024 Statnet Commons
################################################################################
#' Calculate gofN()-style Pearson residuals for arbitrary statistics
#'
#' This function is to be considered experimental. Do NOT rely on
#' it. It may, eventually, be moved to `ergm`, perhaps integrated into
#' the `simulate` methods.
#'
#' @param object an [`ergm`] object.
#' @param nsim number of realizations.
#' @param obs.twostage,GOF,save_stats see [gofN()].
#' @param control a control list returned by [control.gofN.ergm()]; note that `nsim` and `obs.twostage` parameters in the control list are ignored in favor of those passed to the function directly.
#' @param negative_info how to handle the situation in which the constrained variance exceeds the unconstrained: the corresponding action will be taken.
#' @param ... additional arguments to [ergm_model()], [simulate.ergm()], and [summary.ergm_model()].
#'
#' @return an object of similar structure as that returned by [gofN()].
#' @export
marg_cond_sim <- function(object, nsim=1, obs.twostage=nsim/2, GOF=NULL, control=control.gofN.ergm(), save_stats=FALSE, negative_info=c("error","warning","message","ignore"), ...){
check.control.class(c("gofN.ergm"), "marg_cond_sim")
negative_info <- match.arg(negative_info)
control$obs.twostage <- obs.twostage
control$nsim <- nsim
if(control$obs.twostage && nsim %% control$obs.twostage !=0) stop("Number of imputation networks specified by control$obs.twostage control parameter must divide the nsim control parameter evenly.")
nw <- object$network
stats <- stats.obs <- NULL
cl <- ergm.getCluster(control)
nthreads <- nthreads(control) # Fix this, so as not to become confused inside a clusterCall().
message("Constructing simulation model(s).")
if(is.na(object)){
# First, make sure that the sample size is a multiple of the number of threads.
if(control$obs.twostage && control$obs.twostage%%nthreads!=0){
obs.twostage.new <- ceiling(control$obs.twostage/nthreads)*nthreads
message(sQuote("control$obs.twostage"), " must be a multiple of number of parallel threads; increasing it to ", obs.twostage.new, ".")
control$nsim <- round(obs.twostage.new/control$obs.twostage*control$nsim)
control$obs.twostage <- obs.twostage.new
}
sim.m.obs_settings <- simulate(object, monitor=NULL, observational=TRUE, nsim=control$nsim, control=copy_parallel_controls(control,control$obs.simulate), basis=nw, output="stats", ..., return.args="ergm_model")
}else control$obs.twostage <- FALSE # Ignore two-stage setting if no observational process.
sim.m_settings <- simulate(object, monitor=NULL, nsim=control$nsim, control=copy_parallel_controls(control,control$simulate), basis=nw, output="stats", ..., return.args="ergm_model")
message("Constructing GOF model.")
NVL(GOF) <- if(length(object$formula)==3) object$formula[-2] else object$formula
gof.m <- ergm_model(GOF, nw=nw, ...)
nmonitored <- nstats <- nparam(gof.m, canonical=TRUE)
# Indices of monitored elements.
monitored <- nparam(sim.m_settings$object, canonical=TRUE) + seq_len(nmonitored)
# The two-stage sample, taken marginally, *is* an unconstrained
# sample.
if(!control$obs.twostage){
message("Simulating unconstrained sample.")
sim <- do.call(simulate, .update.list(sim.m_settings, list(monitor=gof.m)))
sim <- sim[,monitored,drop=FALSE]
SST <- Welford(nrow(sim), colMeans(sim), .col_var(sim))
if(!save_stats) suppressWarnings(rm(sim))
}
# TODO: Make this adaptive: start with a small simulation,
# increase on fail; or perhaps use a pilot sample.
if(is.na(object)){
# Construct a simulate.ergm_state() call list for constrained simulation.
args <- .update.list(sim.m.obs_settings,
list(monitor=gof.m, nsim=control$nsim/control$obs.twostage,
return.args="ergm_state"))
sim.s.obs_settings <- do.call(simulate, args)
suppressWarnings(rm(sim.m.obs_settings, gof.m))
if(control$obs.twostage){
message("Simulating imputed networks.", appendLF=FALSE)
# Construct a simulate.ergm_state() call list for unconstrained simulation.
args <- .update.list(sim.m_settings, list(return.args="ergm_state"))
sim.s_settings <- do.call(simulate, args)
suppressWarnings(rm(sim.m_settings, args))
#' @importFrom parallel clusterCall
if(!is.null(cl)){
sim <- clusterCall(cl, gen_obs_imputation_series, sim.s_settings, sim.s.obs_settings, control, nthreads, monitored, save_stats)
SST <- lapply(sim, attr, "SST")
MV <- lapply(sim, attr, "MV")
sim <- unlist(sim, recursive=FALSE)
}else{
sim <- gen_obs_imputation_series(sim.s_settings, sim.s.obs_settings, control, nthreads, monitored, save_stats)
SST <- list(attr(sim, "SST"))
MV <- list(attr(sim, "MV"))
}
message("")
if(save_stats) sim <- do.call(rbind, sim) else rm(sim)
SST <- Reduce(update, SST)
MV <- colMeans(do.call(rbind, MV))
message("")
}
suppressWarnings(rm(sim.s_settings))
message("Simulating constrained sample.")
sim.obs <- do.call(simulate, .update.list(sim.s.obs_settings,
list(nsim=control$nsim, return.args=NULL)))
suppressWarnings(rm(sim.s.obs_settings))
sim.obs <- sim.obs[,monitored,drop=FALSE]
}else{
sim.obs <- summary(gof.m, object$network, ...)
suppressWarnings(rm(gof.m))
}
message("Collating the simulations.")
if(save_stats){
stats <- sim
stats.obs <- sim.obs
}
# Calculate variances for each network and statistic.
v <- SST$vars
vo <- if(control$obs.twostage) MV else .col_var(sim.obs)
# If any statistic for the network has negative variance estimate, stop with an error.
if(negative_info != "ignore"){
remain <- v>0 & v-vo<=0
if(any(remain)){
msg <- paste0(sum(remain), " network statistics have bad simulations after permitted number of retries. Rerun with higher nsim= control parameter.")
switch(negative_info,
error = stop(msg),
warning = warning(msg),
message = message(msg))
}
}
m <- SST$means
mo <- colMeans(sim.obs)
suppressWarnings(rm(sim, sim.obs))
message("Summarizing.")
l <- list()
l$var <- ifelse(v>0, v, NA)
l$var.obs <- ifelse(v>0, vo, NA)
l$observed <- ifelse(v>0, mo, NA)
l$fitted <- ifelse(v>0, m, NA)
l$pearson <- ifelse(v>0, (mo-m)/sqrt(v-vo), NA)
if(save_stats){
l$stats <- stats
l$stats.obs <- stats.obs
}
structure(l, nw=nw, control=control)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.