context("Test mr.mash with univariate Y")
test_that("mr.mash and varbvsmix return the same results with univariate Y", {
###Set options
options(stringsAsFactors = FALSE)
###Set seed
set.seed(123)
###Simulate X and Y
##Set parameters
n <- 100
p <- 10
##Set residual covariance
V <- matrix(1.4, ncol=1, nrow=1)
##Set true effects
B <- matrix(c(-2, 5, rep(0, (p-2))), byrow=TRUE, ncol=1)
##Simulate X
X <- matrix(rnorm(n*p), nrow=n, ncol=p)
X <- scale(X, center=TRUE, scale=FALSE)
##Simulate Y
Y <- X%*%B + rnorm(n=n, sd=sqrt(as.numeric(V)))
###Specify the mixture weights and covariance matrices for the
###mixture-of-normals prior.
grid <- seq(0, 5)
S0mix <- list()
for(i in 1:length(grid))
S0mix[[i]] <- matrix(grid[i], ncol=1, nrow=1)
w0 <- rep(1/(length(S0mix)), length(S0mix))
###Estimate residual covariance
V_est <- cov(Y)
###Fit mr.mash
capture.output(
fit_mr.mash <- mr.mash(X, Y, S0mix, w0, V_est, tol=1e-8, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE,
standardize=FALSE, verbose=FALSE, update_V=FALSE,
version="R"))
capture.output(
fit_mr.mash_rcpp <- mr.mash(X, Y, S0mix, w0, V_est, tol=1e-8,
update_w0=TRUE, update_w0_method="EM",
compute_ELBO=TRUE, standardize=FALSE,
verbose=FALSE, update_V=FALSE, version="Rcpp"))
###Fit varbvsmix
fit_varbvsmix <- varbvs::varbvsmix(X,NULL,Y,sigma = as.numeric(V_est),w = w0,
sa = grid/as.numeric(V_est),
update.sigma = FALSE,update.w = TRUE,
drop.threshold = 0,tol = 1e-8,
verbose = FALSE)
mu1_varbvsmix <- rowSums(with(fit_varbvsmix,alpha * mu))
betavarmix <- function (p, mu, s)
rowSums(p*(s + mu^2)) - rowSums(p*mu)^2
S1_varbvsmix <- betavarmix(fit_varbvsmix$alpha, fit_varbvsmix$mu,
fit_varbvsmix$s)
###Tests
expect_equivalent(drop(fit_mr.mash$mu1), mu1_varbvsmix, tolerance = 1e-6,
scale = 1)
expect_equivalent(drop(fit_mr.mash$S1), S1_varbvsmix, tolerance = 1e-6,
scale = 1)
expect_equivalent(fit_mr.mash$w1, fit_varbvsmix$alpha, tolerance = 1e-6,
scale = 1)
expect_equivalent(fit_mr.mash$ELBO, tail(fit_varbvsmix$logZ, 1),
tolerance = 1e-6, scale = 1)
expect_equivalent(drop(fit_mr.mash_rcpp$mu1), mu1_varbvsmix,
tolerance = 1e-6, scale = 1)
expect_equivalent(drop(fit_mr.mash_rcpp$S1), S1_varbvsmix,
tolerance = 1e-6, scale = 1)
expect_equivalent(fit_mr.mash_rcpp$w1, fit_varbvsmix$alpha,
tolerance = 1e-6, scale = 1)
expect_equivalent(fit_mr.mash_rcpp$ELBO, tail(fit_varbvsmix$logZ, 1),
tolerance = 1e-6, scale = 1)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.