R/ComBat_seq.R

Defines functions ComBat_seq

Documented in ComBat_seq

#' Adjust for batch effects using an empirical Bayes framework in RNA-seq raw counts
#' 
#' ComBat_seq is an improved model from ComBat using negative binomial regression, 
#' which specifically targets RNA-Seq count data.
#' 
#' @param counts Raw count matrix from genomic studies (dimensions gene x sample) 
#' @param batch Vector / factor for batch
#' @param group Vector / factor for biological condition of interest 
#' @param covar_mod Model matrix for multiple covariates to include in linear model (signals from these variables are kept in data after adjustment) 
#' @param full_mod Boolean, if TRUE include condition of interest in model
#' @param shrink Boolean, whether to apply shrinkage on parameter estimation
#' @param shrink.disp Boolean, whether to apply shrinkage on dispersion
#' @param gene.subset.n Number of genes to use in empirical Bayes estimation, only useful when shrink = TRUE
#' 
#' @return data A gene x sample count matrix, adjusted for batch effects.
#' 
#' @importFrom edgeR DGEList estimateGLMCommonDisp estimateGLMTagwiseDisp glmFit glmFit.default getOffset
#' @importFrom stats dnbinom lm pnbinom qnbinom
#' @importFrom utils capture.output
#' 
#' @examples 
#' 
#' count_matrix <- matrix(rnbinom(400, size=10, prob=0.1), nrow=50, ncol=8)
#' batch <- c(rep(1, 4), rep(2, 4))
#' group <- rep(c(0,1), 4)
#' 
#' # include condition (group variable)
#' adjusted_counts <- ComBat_seq(count_matrix, batch=batch, group=group, full_mod=TRUE)
#' 
#' # do not include condition
#' adjusted_counts <- ComBat_seq(count_matrix, batch=batch, group=NULL, full_mod=FALSE)
#' 
#' @export
#' 

ComBat_seq <- function(counts, batch, group=NULL, covar_mod=NULL, full_mod=TRUE, 
                       shrink=FALSE, shrink.disp=FALSE, gene.subset.n=NULL){  
  ########  Preparation  ########  
  ## Does not support 1 sample per batch yet
  batch <- as.factor(batch)
  if(any(table(batch)<=1)){
    stop("ComBat-seq doesn't support 1 sample per batch yet")
  }
  
  ## Remove genes with only 0 counts in any batch
  keep_lst <- lapply(levels(batch), function(b){
    which(apply(counts[, batch==b], 1, function(x){!all(x==0)}))
  })
  keep <- Reduce(intersect, keep_lst)
  rm <- setdiff(1:nrow(counts), keep)
  countsOri <- counts
  counts <- counts[keep, ]
  
  # require bioconductor 3.7, edgeR 3.22.1
  dge_obj <- DGEList(counts=counts)
  
  ## Prepare characteristics on batches
  n_batch <- nlevels(batch)  # number of batches
  batches_ind <- lapply(1:n_batch, function(i){which(batch==levels(batch)[i])}) # list of samples in each batch  
  n_batches <- sapply(batches_ind, length)
  #if(any(n_batches==1)){mean_only=TRUE; cat("Note: one batch has only one sample, setting mean.only=TRUE\n")}
  n_sample <- sum(n_batches)
  cat("Found",n_batch,'batches\n')
  
  ## Make design matrix 
  # batch
  batchmod <- model.matrix(~-1+batch)  # colnames: levels(batch)
  # covariate
  group <- as.factor(group)
  if(full_mod & nlevels(group)>1){
    cat("Using full model in ComBat-seq.\n")
    mod <- model.matrix(~group)
  }else{
    cat("Using null model in ComBat-seq.\n")
    mod <- model.matrix(~1, data=as.data.frame(t(counts)))
  }
  # drop intercept in covariate model
  if(!is.null(covar_mod)){
    if(is.data.frame(covar_mod)){
      covar_mod <- do.call(cbind, lapply(1:ncol(covar_mod), function(i){model.matrix(~covar_mod[,i])}))
    }
    covar_mod <- covar_mod[, !apply(covar_mod, 2, function(x){all(x==1)})]
  }
  # bind with biological condition of interest
  mod <- cbind(mod, covar_mod)
  # combine
  design <- cbind(batchmod, mod)
  
  ## Check for intercept in covariates, and drop if present
  check <- apply(design, 2, function(x) all(x == 1))
  #if(!is.null(ref)){check[ref]=FALSE} ## except don't throw away the reference batch indicator
  design <- as.matrix(design[,!check])
  cat("Adjusting for",ncol(design)-ncol(batchmod),'covariate(s) or covariate level(s)\n')
  
  ## Check if the design is confounded
  if(qr(design)$rank<ncol(design)){
    #if(ncol(design)<=(n_batch)){stop("Batch variables are redundant! Remove one or more of the batch variables so they are no longer confounded")}
    if(ncol(design)==(n_batch+1)){stop("The covariate is confounded with batch! Remove the covariate and rerun ComBat-Seq")}
    if(ncol(design)>(n_batch+1)){
      if((qr(design[,-c(1:n_batch)])$rank<ncol(design[,-c(1:n_batch)]))){stop('The covariates are confounded! Please remove one or more of the covariates so the design is not confounded')
      }else{stop("At least one covariate is confounded with batch! Please remove confounded covariates and rerun ComBat-Seq")}}
  }
  
  ## Check for missing values in count matrix
  NAs = any(is.na(counts))
  if(NAs){cat(c('Found',sum(is.na(counts)),'Missing Data Values\n'),sep=' ')}

  
  ########  Estimate gene-wise dispersions within each batch  ########
  cat("Estimating dispersions\n")
  ## Estimate common dispersion within each batch as an initial value
  disp_common <- sapply(1:n_batch, function(i){
    if((n_batches[i] <= ncol(design)-ncol(batchmod)+1) | qr(mod[batches_ind[[i]], ])$rank < ncol(mod)){ 
      # not enough residual degree of freedom
      return(estimateGLMCommonDisp(counts[, batches_ind[[i]]], design=NULL, subset=nrow(counts)))
    }else{
      return(estimateGLMCommonDisp(counts[, batches_ind[[i]]], design=mod[batches_ind[[i]], ], subset=nrow(counts)))
    }
  })
  
  ## Estimate gene-wise dispersion within each batch 
  genewise_disp_lst <- lapply(1:n_batch, function(j){
    if((n_batches[j] <= ncol(design)-ncol(batchmod)+1) | qr(mod[batches_ind[[j]], ])$rank < ncol(mod)){
      # not enough residual degrees of freedom - use the common dispersion
      return(rep(disp_common[j], nrow(counts)))
    }else{
      return(estimateGLMTagwiseDisp(counts[, batches_ind[[j]]], design=mod[batches_ind[[j]], ], 
                                    dispersion=disp_common[j], prior.df=0))
    }
  })
  names(genewise_disp_lst) <- paste0('batch', levels(batch))
  
  ## construct dispersion matrix
  phi_matrix <- matrix(NA, nrow=nrow(counts), ncol=ncol(counts))
  for(k in 1:n_batch){
    phi_matrix[, batches_ind[[k]]] <- vec2mat(genewise_disp_lst[[k]], n_batches[k]) 
  }
  
    
  ########  Estimate parameters from NB GLM  ########
  cat("Fitting the GLM model\n")
  glm_f <- glmFit(dge_obj, design=design, dispersion=phi_matrix, prior.count=1e-4) #no intercept - nonEstimable; compute offset (library sizes) within function
  alpha_g <- glm_f$coefficients[, 1:n_batch] %*% as.matrix(n_batches/n_sample) #compute intercept as batch-size-weighted average from batches
  new_offset <- t(vec2mat(getOffset(dge_obj), nrow(counts))) +   # original offset - sample (library) size
    vec2mat(alpha_g, ncol(counts))  # new offset - gene background expression # getOffset(dge_obj) is the same as log(dge_obj$samples$lib.size)
  glm_f2 <- glmFit.default(dge_obj$counts, design=design, dispersion=phi_matrix, offset=new_offset, prior.count=1e-4) 
  
  gamma_hat <- glm_f2$coefficients[, 1:n_batch]
  mu_hat <- glm_f2$fitted.values
  phi_hat <- do.call(cbind, genewise_disp_lst)
  
  
  ########  In each batch, compute posterior estimation through Monte-Carlo integration  ########  
  if(shrink){
    cat("Apply shrinkage - computing posterior estimates for parameters\n")
    mcint_fun <- monte_carlo_int_NB
    monte_carlo_res <- lapply(1:n_batch, function(ii){
      if(ii==1){
        mcres <- mcint_fun(dat=counts[, batches_ind[[ii]]], mu=mu_hat[, batches_ind[[ii]]], 
                           gamma=gamma_hat[, ii], phi=phi_hat[, ii], gene.subset.n=gene.subset.n)
      }else{
        invisible(capture.output(mcres <- mcint_fun(dat=counts[, batches_ind[[ii]]], mu=mu_hat[, batches_ind[[ii]]], 
                                                    gamma=gamma_hat[, ii], phi=phi_hat[, ii], gene.subset.n=gene.subset.n)))
      }
      return(mcres)
    })
    names(monte_carlo_res) <- paste0('batch', levels(batch))
    
    gamma_star_mat <- lapply(monte_carlo_res, function(res){res$gamma_star})
    gamma_star_mat <- do.call(cbind, gamma_star_mat)
    phi_star_mat <- lapply(monte_carlo_res, function(res){res$phi_star})
    phi_star_mat <- do.call(cbind, phi_star_mat)
    
    if(!shrink.disp){
      cat("Apply shrinkage to mean only\n")
      phi_star_mat <- phi_hat
    }
  }else{
    cat("Shrinkage off - using GLM estimates for parameters\n")
    gamma_star_mat <- gamma_hat
    phi_star_mat <- phi_hat
  }
  
  
  ########  Obtain adjusted batch-free distribution  ########
  mu_star <- matrix(NA, nrow=nrow(counts), ncol=ncol(counts))
  for(jj in 1:n_batch){
    mu_star[, batches_ind[[jj]]] <- exp(log(mu_hat[, batches_ind[[jj]]])-vec2mat(gamma_star_mat[, jj], n_batches[jj]))
  }
  phi_star <- rowMeans(phi_star_mat)
  
  
  ########  Adjust the data  ########  
  cat("Adjusting the data\n")
  adjust_counts <- matrix(NA, nrow=nrow(counts), ncol=ncol(counts))
  for(kk in 1:n_batch){
    counts_sub <- counts[, batches_ind[[kk]]]
    old_mu <- mu_hat[, batches_ind[[kk]]]
    old_phi <- phi_hat[, kk]
    new_mu <- mu_star[, batches_ind[[kk]]]
    new_phi <- phi_star
    adjust_counts[, batches_ind[[kk]]] <- match_quantiles(counts_sub=counts_sub, 
                                                          old_mu=old_mu, old_phi=old_phi, 
                                                          new_mu=new_mu, new_phi=new_phi)
  }
  
  #dimnames(adjust_counts) <- dimnames(counts)
  #return(adjust_counts)
  
  ## Add back genes with only 0 counts in any batch (so that dimensions won't change)
  adjust_counts_whole <- matrix(NA, nrow=nrow(countsOri), ncol=ncol(countsOri))
  dimnames(adjust_counts_whole) <- dimnames(countsOri)
  adjust_counts_whole[keep, ] <- adjust_counts
  adjust_counts_whole[rm, ] <- countsOri[rm, ]
  return(adjust_counts_whole)
}
steveneschrich/msva documentation built on Dec. 23, 2021, 5:33 a.m.