# Template for script to Gibbs sampling after burnin
# Run this script from within a directory that will also
# contain the output
load(paste0(last.burnin, ".burnin.output.Rdata"))
# Loaded variable is burnin.output
# this should be a well burned-in MCMC chain that available for just Gibbs sampling
num.child.process <- 20
CPU.cores <- 20
n.post.sample <- 10
n.space <- 10
seedNumber <- 44
run.hdp.posterior.sample <- function(seed){
one_sample_chains <-
hdpx::hdp_posterior_sample(burnin.output = burnin.output,
n = n.post.sample,
space = n.space,
cpiter = 3,
verbosity = 0,
seed = seed)
return(one_sample_chains)
}
multiple_sample_chains <- parallel::mclapply(
# Must choose a different seed for each of the chains
X = (seedNumber + 1:num.child.process * 10^6) ,
FUN = run.hdp.posterior.sample,
mc.cores = CPU.cores)
clean.chlist <- CleanChlist(multiple_sample_chains)
save(clean.chlist, file = "posterior.sample.chains.output.Rdata")
##the clean.chlist can be used as input of CombinePosteriorChains, then AnalyzeandPlotretval
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.