#' @title Connected components of a 3D mesh
#' @description Computes the connected components of a 3D mesh; for each
#' returned component, its faces are coherently oriented, its normals are
#' computed if desired, and it is triangulated if desired.
#'
#' @param vertices a numeric matrix with three columns, or a \code{bigq}
#' matrix with three columns if \code{numbersType="gmp"}
#' @param faces either an integer matrix (each row provides the vertex indices
#' of the corresponding face) or a list of integer vectors, each one
#' providing the vertex indices of the corresponding face
#' @param mesh if not \code{NULL}, this argument takes precedence over
#' \code{vertices} and \code{faces}, and must be either a list containing
#' the fields \code{vertices} and \code{faces} (objects as described above),
#' otherwise a \strong{rgl} mesh (i.e. a \code{mesh3d} object)
#' @param triangulate Boolean, whether to triangulate the faces
#' @param clean Boolean, whether to clean the mesh (merging duplicated
#' vertices, duplicated faces, removed isolated vertices)
#' @param normals Boolean, whether to compute the normals
#' @param numbersType the type of the numbers used in C++ for the
#' computations; must be one of \code{"double"}, \code{"lazyExact"}
#' (a type provided by CGAL for exact computations), or \code{"gmp"}
#' (exact computations with rational numbers); using exact computations can
#' improve the detection of the exterior edges
#'
#' @return A list of meshes, the connected components, each one being
#' represented as the output of the \code{\link{Mesh}} function.
#'
#' @export
#'
#' @importFrom gmp as.bigq asNumeric
#' @importFrom data.table uniqueN
#'
#' @examples
#' library(MeshesOperations)
#' library(rgl)
#'
#' # a tetrahedron with ill-oriented faces ####
#' vertices1 <- rbind(
#' c(-1, -1, -1),
#' c( 1, 1, -1),
#' c( 1, -1, 1),
#' c(-1, 1, 1)
#' )
#' faces1 <- rbind(
#' c(1, 2, 3),
#' c(3, 4, 2),
#' c(4, 2, 1),
#' c(4, 3, 1)
#' )
#' # same tetrahedron translated ####
#' vertices2 <- vertices1 + 3
#' # merge the two tetrahedra ####
#' vertices <- rbind(vertices1, vertices2)
#' faces <- rbind(faces1, faces1 + 4)
#'
#' # now run the `connectedComponents` function ####
#' meshes <- connectedComponents(vertices, faces, normals = FALSE)
#' mesh1 <- meshes[[1]]; mesh2 <- meshes[[2]]
#' # plot
#' tmesh1 <- toRGL(mesh1)
#' tmesh2 <- toRGL(mesh2)
#' open3d(windowRect = c(50, 50, 562, 562))
#' shade3d(tmesh1, color = "green", back = "culled")
#' shade3d(tmesh2, color = "red", back = "culled")
connectedComponents <- function(
vertices, faces, mesh = NULL, triangulate = FALSE, clean = FALSE,
normals = FALSE, numbersType = "double"
){
numbersType <- match.arg(numbersType, c("double", "lazyExact", "gmp"))
gmp <- numbersType == "gmp"
if(!is.null(mesh)){
if(inherits(mesh, "mesh3d")){
vft <- getVFT(mesh, beforeCheck = TRUE)
mesh <- vft[["rmesh"]]
}
vertices <- mesh[["vertices"]]
faces <- mesh[["faces"]]
}
checkedMesh <- checkMesh(vertices, faces, gmp = gmp, aslist = TRUE)
vertices <- checkedMesh[["vertices"]]
faces <- checkedMesh[["faces"]]
homogeneousFaces <- checkedMesh[["homogeneousFaces"]]
isTriangle <- checkedMesh[["isTriangle"]]
rmesh <- list("vertices" = vertices, "faces" = faces)
if(numbersType == "double"){
ccmeshes <- connectedComponentsK(
rmesh, isTriangle, triangulate, clean, normals
)
}else if(numbersType == "lazyExact"){
ccmeshes <- connectedComponentsEK(
rmesh, isTriangle, triangulate, clean, normals
)
}else{
ccmeshes <- connectedComponentsQ(
rmesh, isTriangle, triangulate, clean, normals
)
}
if(triangulate && isTriangle){
message(
"Ignored option `triangulate`, since the mesh is already triangle."
)
triangulate <- FALSE
}
ncc <- length(ccmeshes)
meshes <- vector("list", ncc)
for(i in seq_len(ncc)){
mesh <- ccmeshes[[i]]
if(gmp){
vertices <- as.bigq(t(mesh[["vertices"]]))
mesh[["gmpVertices"]] <- vertices
vertices <- asNumeric(vertices)
}else{
vertices <- t(mesh[["vertices"]])
}
mesh[["vertices"]] <- vertices
edgesDF <- mesh[["edges"]]
mesh[["edgesDF"]] <- edgesDF
mesh[["edges"]] <- as.matrix(edgesDF[, c("i1", "i2")])
exteriorEdges <- as.matrix(subset(edgesDF, exterior)[, c("i1", "i2")])
mesh[["exteriorEdges"]] <- exteriorEdges
mesh[["exteriorVertices"]] <- which(table(exteriorEdges) != 2L)
if(normals){
mesh[["normals"]] <- t(mesh[["normals"]])
}
if(triangulate){
edges0DF <- mesh[["edges0"]]
mesh[["edges0DF"]] <- edges0DF
mesh[["edges0"]] <- as.matrix(edges0DF[, c("i1", "i2")])
if(normals){
mesh[["normals0"]] <- t(mesh[["normals0"]])
}
}
if(triangulate || homogeneousFaces){
mesh[["faces"]] <- do.call(rbind, mesh[["faces"]])
toRGL <- ifelse(triangulate, 3L, homogeneousFaces)
}else{
sizes <- lengths(mesh[["faces"]])
usizes <- uniqueN(sizes)
if(usizes == 1L){
if(sizes[1L] %in% c(3L, 4L)){
toRGL <- sizes[1L]
}
mesh[["faces"]] <- do.call(rbind, mesh[["faces"]])
}else if(usizes == 2L && all(sizes %in% c(3L, 4L))){
toRGL <- 34L
}else{
toRGL <- FALSE
}
}
attr(mesh, "toRGL") <- toRGL
class(mesh) <- "cgalMesh"
meshes[[i]] <- mesh
}
meshes
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.