#' @title (Pairwise) comparisons between predictions (marginal effects)
#' @name test_predictions
#'
#' @description Function to test differences of adjusted predictions for
#' statistical significance. This is usually called contrasts or (pairwise)
#' comparisons, or "marginal effects". `hypothesis_test()` is an alias.
#'
#' @param object A fitted model object, or an object of class `ggeffects`. If
#' `object` is of class `ggeffects`, arguments `terms`, `margin` and `ci_level`
#' are taken from the `ggeffects` object and don't need to be specified.
#' @param test Hypothesis to test, defined as character string, formula, or
#' data frame. Can be one of:
#'
#' * String:
#' - `"pairwise"` (default), to test pairwise comparisons.
#' - `"trend"` (or `"slope"`) to test for the linear trend/slope of (usually)
#' continuous predictors. These options are just aliases for setting
#' `trend = NULL`.
#' - `"contrast"` to test simple contrasts (i.e. each level is tested against
#' the average over _all_ levels).
#' - `"exclude"` to test simple contrasts (i.e. each level is tested against
#' the average over _all other_ levels, excluding the contrast that is being
#' tested).
#' - `"interaction"` to test interaction contrasts (difference-in-difference
#' contrasts). More flexible interaction contrasts can be calcualted using
#' the `test_args` argument.
#' - `"consecutive"` to test contrasts between consecutive levels of a predictor.
#' - `"polynomial"` to test orthogonal polynomial contrasts, assuming
#' equally-spaced factor levels.
#'
#' * A data frame with custom contrasts. See 'Examples'.
#'
#' * `NULL`, in which case simple contrasts are computed.
#' @param test_args Optional arguments passed to `test`, typically provided as
#' named list. Only applies to those options that use the **emmeans** package
#' as backend, e.g. if `test = "interaction"`, `test_args` will be passed to
#' `emmeans::contrast(interaction = test_args)`. For other *emmeans* options
#' (like `"contrast"`, `"exclude"`, `"consecutive"` and so on), `test_args` will
#' be passed to the `option` argument in `emmeans::contrast()`.
#' @param terms If `object` is an object of class `ggeffects`, the same `terms`
#' argument is used as for the predictions, i.e. `terms` can be ignored. Else,
#' if `object` is a model object, `terms` must be a character vector with the
#' names of the focal terms from `object`, for which contrasts or comparisons
#' should be displayed. At least one term is required, maximum length is three
#' terms. If the first focal term is numeric, contrasts or comparisons for the
#' *slopes* of this numeric predictor are computed (possibly grouped by the
#' levels of further categorical focal predictors).
#' @param by Character vector specifying the names of predictors to condition on.
#' Hypothesis test is then carried out for focal terms by each level of `by`
#' variables. This is useful especially for interaction terms, where we want
#' to test the interaction within "groups". `by` is only relevant for
#' categorical predictors.
#' @param margin Character string, indicates the method how to marginalize over
#' non-focal terms. See [`predict_response()`] for details. If `object` is an
#' object of class `ggeffects`, the same `margin` argument is used as for the
#' predictions, i.e. `margin` can be ignored.
#' @param p_adjust Character vector, if not `NULL`, indicates the method to
#' adjust p-values. See [`stats::p.adjust()`] or [`stats::p.adjust.methods`]
#' for details. Further possible adjustment methods are `"tukey"` or `"sidak"`,
#' and for `johnson_neyman()`, `"fdr"` (or `"bh"`) and `"esarey"` (or its
#' short-cut `"es"`) are available options. Some caution is necessary when
#' adjusting p-value for multiple comparisons. See also section _P-value adjustment_
#' below.
#' @param df Degrees of freedom that will be used to compute the p-values and
#' confidence intervals. If `NULL`, degrees of freedom will be extracted from
#' the model using [`insight::get_df()`] with `type = "wald"`.
#' @param ci_level Numeric, the level of the confidence intervals. If `object`
#' is an object of class `ggeffects`, the same `ci_level` argument is used as
#' for the predictions, i.e. `ci_level` can be ignored.
#' @param collapse_levels Logical, if `TRUE`, term labels that refer to identical
#' levels are no longer separated by "-", but instead collapsed into a unique
#' term label (e.g., `"level a-level a"` becomes `"level a"`). See 'Examples'.
#' @param engine Character string, indicates the package to use for computing
#' contrasts and comparisons. Setting `engine = "emmeans"` (default) provides
#' some additional test options: `"interaction"` to calculate interaction
#' contrasts, `"consecutive"` to calculate contrasts between consecutive levels
#' of a predictor, or a data frame with custom contrasts (see also `test`). The
#' second option, `engine = "ggeffects"`. However, this option offers less
#' features as the default engine, `"emmeans"`. It can be faster in some cases,
#' though, and works for comparing predicted random effects in mixed models, or
#' predicted probabilities of the zero-inflation component.
#' @param condition Named character vector, which indicates covariates that
#' should be held constant at specific values, for instance
#' `condition = c(covariate1 = 20, covariate2 = 5)`.
#' @param verbose Toggle messages and warnings.
#' @param ... Arguments passed down to [`data_grid()`] when creating the reference
#' grid.
#'
#' @seealso There is also an `equivalence_test()` method in the **parameters**
#' package ([`parameters::equivalence_test.lm()`]), which can be used to
#' test contrasts or comparisons for practical equivalence. This method also
#' has a `plot()` method, hence it is possible to do something like:
#' ```
#' library(parameters)
#' predict_response(model, focal_terms) |>
#' equivalence_test() |>
#' plot()
#' ```
#'
#' @section Simple workflow for pairwise comparisons:
#'
#' A simple workflow includes calculating adjusted predictions and passing the
#' results directly to `test_predictions()`, e.g.:
#' ```
#' # 1. fit your model
#' model <- lm(mpg ~ hp + wt + am, data = mtcars)
#' # 2. calculate adjusted predictions
#' pr <- predict_response(model, "am")
#' pr
#' # 3. test pairwise comparisons
#' test_predictions(pr)
#' ```
#' See also [this vignette](https://strengejacke.github.io/ggeffects/articles/practical_glm_workflow.html).
#'
#' @section P-value adjustment for multiple comparisons:
#'
#' Note that p-value adjustment for methods supported by `p.adjust()` (see also
#' `p.adjust.methods`), each row is considered as one set of comparisons, no
#' matter which `test` was specified. That is, for instance, when `test_predictions()`
#' returns eight rows of predictions (when `test = NULL`), and `p_adjust = "bonferroni"`,
#' the p-values are adjusted in the same way as if we had a test of pairwise
#' comparisons (`test = "pairwise"`) where eight rows of comparisons are
#' returned. For methods `"tukey"` or `"sidak"`, a rank adjustment is done
#' based on the number of combinations of levels from the focal predictors
#' in `terms`. Thus, the latter two methods may be useful for certain tests
#' only, in particular pairwise comparisons.
#'
#' For `johnson_neyman()`, the only available adjustment methods are `"fdr"`
#' (or `"bh"`) (_Benjamini & Hochberg (1995)_) and `"esarey"` (or `"es"`)
#' (_Esarey and Sumner 2017_). These usually return similar results. The major
#' difference is that `"fdr"` can be slightly faster and more stable in edge
#' cases, however, confidence intervals are not updated. Only the p-values are
#' adjusted. `"esarey"` is slower, but confidence intervals are updated as well.
#'
#' @inheritSection print Global Options to Customize Tables when Printing
#'
#' @section Global options to choose package for calculating comparisons:
#'
#' `ggeffects_test_engine` can be used as option to either use the **marginaleffects**
#' package for computing contrasts and comparisons (default), or the **emmeans**
#' package (e.g. `options(ggeffects_test_engine = "emmeans")`). The latter is
#' useful when the **marginaleffects** package is not available, or when the
#' **emmeans** package is preferred. You can also provide the engine directly, e.g.
#' `test_predictions(..., engine = "emmeans")`. Note that using **emmeans** as
#' backend is currently not as feature rich as the default (**marginaleffects**).
#'
#' If `engine = "emmeans"`, the `test` argument can also be `"interaction"`
#' to calculate interaction contrasts (difference-in-difference contrasts),
#' `"consecutive"` to calculate contrasts between consecutive levels of a predictor,
#' or a data frame with custom contrasts. If `test` is one of the latter options,
#' and `engine` is not specified, the `engine` is automatically set to `"emmeans"`.
#' Additionally, the `test_args` argument can be used to specify further options
#' for those contrasts. See 'Examples' and documentation of `test_args`.
#'
#' If the **marginaleffects** package is not installed, the **emmeans** package is
#' used automatically. If this package is not installed as well,
#' `engine = "ggeffects"` is used.
#'
#' @return A data frame containing predictions (e.g. for `test = NULL`),
#' contrasts or pairwise comparisons of adjusted predictions or estimated
#' marginal means.
#'
#' @references
#' Esarey, J., & Sumner, J. L. (2017). Marginal effects in interaction models:
#' Determining and controlling the false positive rate. Comparative Political
#' Studies, 1–33. Advance online publication. doi: 10.1177/0010414017730080
#'
#' @examplesIf all(insight::check_if_installed(c("parameters", "emmeans"), quietly = TRUE)) && interactive()
#' \donttest{
#' data(efc)
#' efc$c172code <- as.factor(efc$c172code)
#' efc$c161sex <- as.factor(efc$c161sex)
#' levels(efc$c161sex) <- c("male", "female")
#' m <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)
#'
#' # direct computation of comparisons
#' test_predictions(m, "c172code")
#'
#' # passing a `ggeffects` object
#' pred <- predict_response(m, "c172code")
#' test_predictions(pred)
#'
#' # test for slope
#' test_predictions(m, "c12hour")
#'
#' # interaction - contrasts by groups
#' m <- lm(barthtot ~ c12hour + c161sex * c172code + neg_c_7, data = efc)
#' test_predictions(m, c("c161sex", "c172code"), test = NULL)
#'
#' # interaction - pairwise comparisons by groups
#' test_predictions(m, c("c161sex", "c172code"))
#'
#' # interaction - collapse unique levels
#' test_predictions(m, c("c161sex", "c172code"), collapse_levels = TRUE)
#'
#' # p-value adjustment
#' test_predictions(m, c("c161sex", "c172code"), p_adjust = "tukey")
#'
#' # not all comparisons, only by specific group levels
#' test_predictions(m, "c172code", by = "c161sex")
#'
#' # interaction - slope by groups
#' m <- lm(barthtot ~ c12hour + neg_c_7 * c172code + c161sex, data = efc)
#' test_predictions(m, c("neg_c_7", "c172code"))
#'
#' # Interaction and consecutive contrasts -----------------
#' # -------------------------------------------------------
#' data(coffee_data, package = "ggeffects")
#' m <- lm(alertness ~ time * coffee + sex, data = coffee_data)
#'
#' # consecutive contrasts
#' test_predictions(m, "time", by = "coffee", test = "consecutive")
#'
#' # same as (using formula):
#' pr <- predict_response(m, c("time", "coffee"))
#' test_predictions(pr, test = difference ~ sequential | coffee)
#'
#' # interaction contrasts - difference-in-difference comparisons
#' pr <- predict_response(m, c("time", "coffee"), margin = "marginalmeans")
#' test_predictions(pr, test = "interaction")
#'
#' # Ratio contrasts ---------------------------------------
#' # -------------------------------------------------------
#' test_predictions(test = ratio ~ reference | coffee)
#'
#' # Custom contrasts --------------------------------------
#' # -------------------------------------------------------
#' wakeup_time <- data.frame(
#' "wakeup vs later" = c(-2, 1, 1) / 2, # make sure each "side" sums to (+/-)1!
#' "start vs end of day" = c(-1, 0, 1)
#' )
#' test_predictions(m, "time", by = "coffee", test = wakeup_time)
#' }
#' @export
test_predictions <- function(object, ...) {
UseMethod("test_predictions")
}
#' @rdname test_predictions
#' @export
hypothesis_test <- test_predictions
#' @rdname test_predictions
#' @export
test_predictions.default <- function(object,
terms = NULL,
by = NULL,
test = "pairwise",
test_args = NULL,
p_adjust = NULL,
df = NULL,
ci_level = 0.95,
margin = "mean_reference",
condition = NULL,
collapse_levels = FALSE,
engine = "emmeans",
verbose = TRUE,
...) {
# margin-argument -----------------------------------------------------------
# harmonize the "margin" argument
# ---------------------------------------------------------------------------
margin <- .tp_validate_margin(margin)
# check engine and check for installed packages -----------------------------
# check if we have the appropriate package version installed
# ---------------------------------------------------------------------------
engine <- .tp_validate_engine(engine, test)
# object-argument -----------------------------------------------------------
# validate the "object" argument
# ---------------------------------------------------------------------------
object <- .tp_validate_object(object)
# ci-level cannot be NA, set to default value then
if (is.na(ci_level)) {
ci_level <- 0.95
}
# engine --------------------------------------------------------------------
# here we switch to emmeans, if "engine" is set to "emmeans"
# ---------------------------------------------------------------------------
.test_predictions_emmeans(
object,
terms = terms,
by = by,
test = test,
test_args = test_args,
p_adjust = p_adjust,
df = df,
ci_level = ci_level,
collapse_levels = collapse_levels,
margin = margin,
verbose = verbose,
...
)
}
#' @rdname test_predictions
#' @export
test_predictions.ggeffects <- function(object,
by = NULL,
test = "pairwise",
p_adjust = NULL,
df = NULL,
collapse_levels = FALSE,
engine = "emmeans",
verbose = TRUE,
...) {
# check for installed packages ----------------------------------------------
# check if we have the appropriate package version installed
# ---------------------------------------------------------------------------
# default for "engine" argument?
engine <- getOption("ggeffects_test_engine", engine)
# validate "engine" argument
engine <- insight::validate_argument(engine, c("marginaleffects", "emmeans", "ggeffects"))
if (engine == "marginaleffects") { # nolint
insight::format_warning("Engine \"marginaleffects\" is no longer supported. The {marginaleffects} package underwent large revisions, which would have required rewriting major code parts in {ggeffects}. Instead, we implemented full support for estimating slopes, marginal effects, contrasts and pairwise comparisons in the {modelbased} package. Please use `modelbased::estimate_contrasts()` now.") # nolint
engine <- "emmeans"
}
# if we don't have the package installed, we switch to emmeans
if (!insight::check_if_installed("emmeans", quietly = TRUE) && engine == "emmeans") {
engine <- "ggeffects"
}
# retrieve focal predictors
focal <- attributes(object)$original.terms
# retrieve ci level predictors
ci_level <- attributes(object)$ci_level
# retrieve condition argument
condition <- attributes(object)$condition
# check prediction type - we set the default scale here. This is only
# required for models with zero-inflation component (see later)
type <- attributes(object)$type
# check if all focal terms are random effects - if so, we switch to ggeffects
# because we cannot calculate comparisons for random effects with marginaleffects
# or emmeans
model <- .get_model_object(name = attr(object, "model.name", exact = TRUE))
random_pars <- insight::find_random(model, split_nested = TRUE, flatten = TRUE)
if (!is.null(random_pars) && all(.clean_terms(focal) %in% random_pars) && !is.na(ci_level)) {
engine <- "ggeffects"
}
# check if we have a glmmTMB zero-inflated model - if comparisons for the
# zero-inflation probabilities are requedsted, we switch to ggeffects
# because we cannot calculate them with marginaleffects or emmeans
is_zero_inflated <- .safe(insight::model_info(model)$is_zero_inflated, FALSE)
if (is_zero_inflated && inherits(model, "glmmTMB") && !is.null(type) && type %in% c("zi_prob", "zero", "zprob")) {
engine <- "ggeffects"
}
# if type = "simulate", we have to use the ggeffects-engine
if (identical(type, "simulate")) {
engine <- "ggeffects"
}
# experimental! ------------------------------------------------------------
# Not officially documented. This is currently work in progress and not
# yet fully supported. The "ggeffects" engine is not yet fully implemented.
# ---------------------------------------------------------------------------
if (engine == "ggeffects") {
return(.test_predictions_ggeffects(
object,
by = by,
test = test,
p_adjust = p_adjust,
df = attributes(object)$df,
ci_level = ci_level,
collapse_levels = collapse_levels,
verbose = verbose,
...
))
}
# information about vcov-matrix
vcov_matrix <- attributes(object)$vcov
# information about margin
margin <- attributes(object)$margin
dot_args <- list(...)
# set default for marginaleffects, we pass this via dots
if (!is.null(vcov_matrix) && is.null(dot_args$vcov)) {
dot_args$vcov <- vcov_matrix
}
my_args <- list(
object = model,
terms = focal,
by = by,
test = test,
p_adjust = p_adjust,
df = df,
ci_level = ci_level,
collapse_levels = collapse_levels,
margin = margin,
condition = condition,
engine = engine,
verbose = verbose
)
do.call(test_predictions.default, c(my_args, dot_args))
}
# helper ------------------------------
.tp_validate_margin <- function(margin) {
# default for "margin" argument?
margin <- getOption("ggeffects_margin", margin)
# validate "margin" argument
margin <- insight::validate_argument(
margin,
c(
"mean_reference", "mean_mode", "marginalmeans", "empirical",
"counterfactual", "full_data", "average", "marginaleffects"
)
)
# harmonize argument
switch(margin,
mean_reference = ,
mean_mode = "mean_reference",
marginalmeans = "marginalmeans",
"empirical"
)
}
.tp_validate_engine <- function(engine, test) {
# default for "engine" argument?
engine <- getOption("ggeffects_test_engine", engine)
# validate "engine" argument
engine <- .safe(match.arg(engine, c("marginaleffects", "emmeans")))
# throw error if invalid engine
if (is.null(engine)) {
insight::format_error(
"Argument `engine` must be either \"marginaleffects\" or \"emmeans\". If you want to use `engine = \"ggeffects\"`, you need to provide the `ggeffects` object directly, e.g.:", # nolint
paste0("\n ", insight::color_text("pr <- predict_response(model, ...)", "cyan")),
insight::color_text("test_predictions(pr, engine = \"ggeffects\")", "cyan")
)
}
# for test = "interaction" or "consecutive", we need to call emmeans!
if (.is_emmeans_contrast(test)) {
engine <- "emmeans"
}
# tell user about deprecation
if (engine == "marginaleffects") { # nolint
insight::format_warning("Engine \"marginaleffects\" is no longer supported. The {marginaleffects} package underwent large revisions, which would have required rewriting major code parts in {ggeffects}. Instead, we implemented full support for estimating slopes, marginal effects, contrasts and pairwise comparisons in the {modelbased} package. Please use `modelbased::estimate_contrasts()` now.") # nolint
engine <- "emmeans"
}
# if we don't have the package installed, we switch to emmeans
if (!insight::check_if_installed("emmeans", quietly = TRUE) && engine == "emmeans") {
# if we even don't have emmeans, we throw an error
insight::format_error(
"The {emmeans} package is required for this function. Please install it from CRAN by running `install.packages(\"emmeans\")`." # nolint
)
}
engine
}
.tp_validate_object <- function(object) {
# when model is a "ggeffects" object, due to environment issues, "model"
# can be NULL (in particular in tests), thus check for NULL
if (is.null(object)) {
insight::format_error(
"No model object found. Try to directly pass the model object to `test_predictions()`, e.g.:",
paste0("\n ", insight::color_text("model <- lm(mpg ~ gear, data = mtcars)", "cyan")),
insight::color_text("test_predictions(model, \"gear\")", "cyan")
)
}
# for gamm/gamm4 objects, we have a list with two items, mer and gam
# extract just the gam-part then
if (is.gamm(object) || is.gamm4(object)) {
object <- object$gam
}
# only model objects are supported...
if (!insight::is_model_supported(object)) {
insight::format_error(
paste0("Objects of class `", class(object)[1], "` are not yet supported.")
)
}
# for parsnip-models, use $fit element
if (inherits(object, "model_fit")) {
object <- object$fit
}
object
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.