####------------------- simulation testinfo -----------------------####
# devtools::load_all()
# library(doParallel)
library(doMPI)
library(MFCblockInfo)
library(mvtnorm)
library(lpSolveAPI)
####------------------- simulation design -------------------------####
# design.load.all <- readRDS("simulation/design_load_all_5-15_equal.rds")
design.load.all <- readRDS("design_load_all_5-15_equal.rds")
factor.blocksize <- c(2,3,4)
factor.keying <- "0" # c("0","12","23")
factor.int <- "large" #c("small","large")
factor.load <- "acceptable" #c("good","acceptable")
factor.algorithm <- c("greedy-a","greedy-d","opt-t","r2","loads","random")
factor.target <- c("weighted","equal")
factor.ntraits <- c("5") #c("5,","15)
#number of replications
R <- 200 #500
design.sim <- expand.grid("blocksize"=factor.blocksize, "keying"=factor.keying, "intercepts"=factor.int,
"loads"=factor.load, "target"=factor.target, "ntraits"=factor.ntraits, "rep"=1:R)
####-------------------- fixed conditions -------------------------####
#trait correlations (Big 5 from meta-analysis van der Linden et al.)
trait.cov <- matrix(c(1,-.36,-.17,-.36,-.43,
-.36,1,.43,.26,.29,
-.17,.43,1,.21,.20,
-.36,.26,.21,1,.43,
-.43,.29,.20,.43,1),
nrow=5,ncol=5)
int.range <- list("small"=c(-1,1), "large"=c(-2,2))
load.range <- list("good"=c(.65,.95), "acceptable"=c(.45,.95))
#create grid of traits if traits are not given
tr.levels <- c(-1,0,1)
tr.list <- vector("list", ncol(trait.cov))
for(tr in 1:length(tr.list)) tr.list[[tr]] <- tr.levels
traits.grid <- expand.grid(tr.list)
#reduce for testing
# traits.grid <- traits.grid[1:5,]
# traits.grid <- rbind(traits.grid, rep(0,5))
J <- 500
####------------------ start simulation -------------------####
# cl <- makeCluster(4)
# registerDoParallel(cl)
# mpiopts <- NULL
cl <- startMPIcluster()
registerDoMPI(cl)
sinkWorkerOutput(paste0("worker_iter_greedy.out"))
# define chunkSize so that each cluster worker gets a single task chunk
chunkSize <- ceiling(R/getDoParWorkers())
mpiopts <- list(chunkSize=chunkSize)
res <- foreach (d=1:nrow(design.sim), .combine=rbind, .verbose=T, .packages=c("mvtnorm","numDeriv","devtools","lpSolveAPI","MFCblockInfo"),
.inorder=F, .errorhandling="remove", .options.mpi=mpiopts) %dopar% {
set.seed(1204+d)
#select design load according to test design condition
design.load <- design.load.all[[as.character(design.sim[d,"ntraits"])]][[as.character(design.sim[d,"blocksize"])]][[as.character(design.sim[d,"keying"])]]
#quadruple
design.load <- rbind(design.load, design.load, design.load, design.load)
nb <- design.sim[d,"blocksize"]
K <- nrow(design.load)/nb
blocks <- create.block.ind(K, nb)
#12 pairwise comparisons, constant across block sizes
K.start <- 12/choose(nb,2)
K.final <- K/4
####------------------ simulate item parameters -------------------####
#select blocks.start so that all traits are included (fixed)
if (design.sim[d,"blocksize"]==2) {
blocks.start <- seq(1, 144, 12)
} else {
blocks.start <- 1:K.start
}
blocks.part2 <- (1:K)[! (1:K) %in% blocks.start]
#re-order design.load
design.load <- design.load[c(t(blocks[c(blocks.start, blocks.part2),])),]
#separately for first and second half
items1 <- sim.items(design.load=design.load[c(t(blocks[1:K.start,])),], K=K.start, nb=nb,
load.range=c(.65,.95),
int.range=c(-1,1))
items2 <- sim.items(design.load=design.load[c(t(blocks[(K.start+1):K,])),], K=K-K.start, nb=nb,
load.range=load.range[[as.character(design.sim[d,"loads"])]],
int.range=int.range[[as.character(design.sim[d,"intercepts"])]])
items <- rbind(items1, items2)
####-------------------------------- traits and responses --------------------------####
if(as.character(design.sim[d,"target"])=="equal") {
#grid as traits -> to evaluate equal weights
traits <- rbind(traits.grid, traits.grid)
#weights equal
weights.grid <- a.all <- rep(1,nrow(traits.grid))
} else {
traits <- rmvnorm(n=J, mean=rep(0,ncol(design.load)), sigma = trait.cov, method="chol")
#weights for opt
weights.grid <- NULL #(implemented in function)
}
responses <- sim.responses(traits, items, design.load, K, nb, return.index=F)
####------------------- calculate info --------------------------------####
load.mat <- items$loads * design.load
gamma.true <- create.design.mat(K=K, nb=nb) %*% items$u.mean
infos <- calc.info.block(lhb.mplus, traits=as.matrix(traits.grid), int=gamma.true, loads=load.mat, uni=diag(items$uni),
K=K, nb=nb)
####-------------- greedy algorithm with A-optimality and D-optimality ----------------####
ind.a.opt <- select.greedy(infos, calc.a.optimality, traits.grid, K, K.start, K.final, maximize=FALSE, weights.grid=weights.grid)
ind.d.opt <- select.greedy(infos, calc.d.optimality, traits.grid, K, K.start, K.final, maximize=TRUE, weights.grid=weights.grid)
####---------------- MIP T-optimality ----------------------------------####
#trace for each block (and grid point)
info.trace <- calc.info.trace(infos)
#across blocks (for weights on grid points)
info.trace.pool <- rowSums(info.trace)
info.trace.pool.start <- rowSums(info.trace[,1:K.start])
#without start
info.trace <- info.trace[,-c(1:K.start)]
results.opt <- select.optimal(info.trace, traits.grid, info.trace.pool.start, K-K.start, K.final-K.start, weights.grid=weights.grid)
ind.t.opt <- c(1:K.start, K.start + results.opt$ind.opt)
####---------------- block selection based on R^2 ----------------------####
#R^2 mean across persons and traits, weighted
if(as.character(design.sim[d,"target"])=="weighted") {
#weights for R^2
a.all <- calc.a.optimality(infos)
a.all <- a.all[which(rowSums(traits.grid==0)==ncol(traits.grid))]/a.all
}
means.r2 <- do.call(c, lapply(1:K, function(k,i,a) mean(rowMeans(calc.info.block.r2(i, wo.blocks=k))*a), i=infos, a=a.all))
ind.r2 <- c(1:K.start, K.start + order(means.r2[(K.start+1):K], decreasing = T)[1:(K.final - K.start)])
####---------------- item selection based on loadings ------------------####
loads.blocks <- t(apply(blocks, 1, function(b, dl) colSums(dl[b,]), dl=load.mat))
means.loads <- rowMeans(abs(loads.blocks))
ind.loads <- c(1:K.start, K.start + order(means.loads[(K.start+1):K], decreasing = T)[1:(K.final - K.start)])
####---------------- random item selection ------------------####
ind.rand <- c(1:K.start, sample((K.start + 1):K, K.final-K.start))
####---------------- trait estimation and summary measures -------------####
ind.list <- list("greedy-a"=ind.a.opt, "greedy-d"=ind.d.opt, "opt-t"=ind.t.opt,
"r2"=ind.r2, "loads"=ind.loads, "random"=ind.rand)
res.r <- NULL
for (a in factor.algorithm) {
if(anyNA(ind.list[[as.character(a)]])) {
res.r <- rbind(res.r,
data.frame(design.sim[d,], "trait"=1:ncol(design.load), "algorithm"=a, rec=NA, RMSE=NA, MAB=NA))
} else {
blocks.ind <- c(t(blocks[ind.list[[as.character(a)]],]))
gamma.true <- create.design.mat(K=K.final, nb=nb) %*% items$u.mean[blocks.ind]
#estimate traits based on new questionnaire
estimates <- est.MAP(FUN=lhb.mplus, responses=responses$rankindices[,ind.list[[as.character(a)]]],
int=gamma.true, loads=load.mat[blocks.ind,], uni=diag(items$uni)[blocks.ind,blocks.ind],
perms=permute(1:nb), nb=nb,
m.prior=rep(0,ncol(design.load)), s.prior=trait.cov, SE=FALSE)
rec <- diag(cor(estimates$traits, traits))
RMSE <- colMeans((estimates$traits - traits)^2)
MAB <- colMeans(abs(estimates$traits - traits))
res.r <- rbind(res.r,
data.frame(design.sim[d,], "trait"=1:ncol(design.load), "algorithm"=a, rec, RMSE, MAB))
}
}
saveRDS(res.r, file=paste0("results_greedy_conditions_poskeyed/results_greedy_d",d,".rds"))
res.r
}
saveRDS(res, file="results_simulation_greedy_conditions_poskeyed.rds")
# stopCluster(cl)
closeCluster(cl)
mpi.quit()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.