R/modelling.R

Defines functions modelling

Documented in modelling

#' @include Algorithm.SDM.R checkargs.R evaluate.R
#' @importFrom shiny incProgress
#' @importFrom raster stack writeRaster
NULL

#'Build an SDM using a single algorithm
#'
#'This is a function to build an SDM with one algorithm for a single species.
#'The function takes as inputs an occurrence data frame made of presence/absence
#'or presence-only records and a raster object for data extraction and
#'projection. The function returns an S4 \linkS4class{Algorithm.SDM} class
#'object containing the habitat suitability map, the binary map and the
#'evaluation table.
#'
#'@param algorithm character. Choice of the algorithm to be run (see details
#'  below).
#'@param Occurrences data frame. Occurrence table (can be processed first by
#'  \code{\link{load_occ}}).
#'@param Env raster object. Raster object of environmental variable (can be
#'  processed first by \code{\link{load_var}}).
#'@param Xcol character. Name of the column in the occurrence table containing
#'  Latitude or X coordinates.
#'@param Ycol character. Name of the column in the occurrence table containing
#'  Longitude or Y coordinates.
#'@param Pcol character. Name of the column in the occurrence table specifying
#'  whether a line is a presence or an absence. A value of 1 is presence and
#'  value of 0 is absence. If NULL presence-only dataset is assumed.
#'@param name character. Optional name given to the final SDM produced (by
#'  default 'Algorithm.SDM').
#'@param PA list(nb, strat) defining the pseudo-absence selection strategy used
#'  in case of presence-only dataset. If PA is NULL, recommended PA selection
#'  strategy is used depending on the algorithms (see details below).
#'@param cv character. Method of cross-validation used to evaluate the SDM (see
#'  details below).
#'@param cv.param numeric. Parameters associated to the method of
#'  cross-validation used to evaluate the SDM (see details below).
#'@param final.fit.data strategy used for fitting the final model to be returned: 'holdout'= use same train and test data as in (last) evaluation, 'all'= train model with all data (i.e. no test data) or numeric (0-1)= sample a custom training fraction (left out fraction is set aside as test data)
#'@param select logical. If set to true, models are evaluated before being
#'  projected, and not kept if they don't meet selection criteria (see details
#'  below).
#'@param select.metric character. Metric(s) used to pre-select SDMs that reach a
#'  sufficient quality (see details below).
#'@param select.thresh numeric. Threshold(s) associated with the metric(s) used
#'  to compute the selection.
#' @param bin.thresh character. Classification threshold (\code{\link[dismo]{threshold}}) used to binarize model predictions into presence/absence and compute the confusion matrix (see details below).
#' @param metric (deprecated) character. Classification threshold (\code{SDMTools::optim.thresh}) used to binarize model predictions into presence/absence and compute the confusion matrix (see details below). This argument is only kept for backwards compatibility, if possible please use \code{bin.thresh} instead.
#' @param thresh (deprecated) integer. Number of equally spaced thresholds in the interval 0-1 (\code{SDMTools::optim.thresh}). Only needed when \code{metric} is set.
#'@param axes.metric Metric used to evaluate variable relative importance (see
#'  details below).
#'@param verbose logical. If set to true, allows the function to print text in
#'  the console.
#'@param GUI logical. Don't take that argument into account (parameter for the
#'  user interface).
#'@param ... additional parameters, e.g. argument lists for the source algorithm modelling functions (see details below).
#'
#'@return an S4 \linkS4class{Algorithm.SDM} Class object viewable with the
#'  \code{\link{plot.model}} method.
#'
#'@details \describe{ \item{algorithm}{'all' allows to call directly all
#'  available algorithms. Currently, available algorithms include Generalized
#'  linear model (\strong{GLM}), Generalized additive model (\strong{GAM}),
#'  Multivariate adaptive regression splines (\strong{MARS}), Generalized
#'  boosted regressions model (\strong{GBM}), Classification tree analysis
#'  (\strong{CTA}), Random forest (\strong{RF}), Maximum entropy
#'  (\strong{MAXENT}), Artificial neural network (\strong{ANN}), and Support
#'  vector machines (\strong{SVM}). Each algorithm has its own parameters
#'  settable with the \strong{...} by supplying argument lists (see each algorithm section below to set
#'  their parameters).} \item{'PA'}{list with two values: \strong{nb} number of
#'  pseudo-absences selected, and \strong{strat} strategy used to select
#'  pseudo-absences: either random selection or disk selection. We set default
#'  recommendation from Barbet-Massin et al. (2012) (see reference).}
#'  \item{cv}{\strong{Cross-validation} method used to split the occurrence
#'  dataset used for evaluation: \strong{holdout} data are partitioned into a
#'  training set and an evaluation set using a fraction (\emph{cv.param[1]}) and
#'  the operation can be repeated (\emph{cv.param[2]}) times, \strong{k-fold}
#'  data are partitioned into k (\emph{cv.param[1]}) folds being k-1 times in
#'  the training set and once the evaluation set and the operation can be
#'  repeated (\emph{cv.param[2]}) times, \strong{LOO} (Leave One Out) each point
#'  is successively taken as evaluation data.} \item{bin.thresh}{Choice of the
#'  metric used to binarize model predictions and compute the confusion matrix (by default SES as recommended by Liu et al. (2005), see reference below):
#'  \strong{Kappa} maximizes the Kappa, \strong{NOM} highest threshold without omission, \strong{TSS} (True Skill Statistic)
#'  maximizes the sum of sensitivity and specificity, \strong{SES} uses the
#'  sensitivity-specificity equality, \strong{EP} threshold where modeled prevalence is closest to observed prevalence.}\item{metric (deprecated)}{Choice of the
#'  metric used to compute the binary map threshold and the confusion matrix (by
#'  default SES as recommended by Liu et al. (2005), see reference below):
#'  \strong{Kappa} maximizes the Kappa, \strong{CCR} maximizes the proportion of
#'  correctly predicted observations, \strong{TSS} (True Skill Statistic)
#'  maximizes the sum of sensitivity and specificity, \strong{SES} uses the
#'  sensitivity-specificity equality, \strong{LW} uses the lowest occurrence
#'  prediction probability, \strong{ROC} minimizes the distance between the ROC
#'  plot (receiving operating curve) and the upper left corner
#'  (1,1).}\item{axes.metric}{Choice of the metric used to evaluate the variable
#'  relative importance (difference between a full model and one with each
#'  variable successively omitted): \strong{Pearson} (computes a simple
#'  Pearson's correlation \emph{r} between predictions of the full model and the
#'  one without a variable, and returns the score \emph{1-r}: the highest the
#'  value, the more influence the variable has on the model), \strong{AUC},
#'  \strong{Kappa}, \strong{sensitivity}, \strong{specificity}, and
#'  \strong{prop.correct} (proportion of correctly predicted occurrences).}
#'  \item{select.metric}{Selection metric(s) used to select SDMs: \strong{AUC},
#'  \strong{Kappa}, \strong{sensitivity}, \strong{specificity}, and
#'  \strong{prop.correct} (proportion of correctly predicted occurrences), \strong{calibration} (calibration statistic as used by Naimi & Araujo 2016).}
#'  \item{'...'}{See algorithm in detail section} }
#'
#'@section Generalized linear model (\strong{GLM}) : Uses the \code{glm}
#'  function from the package 'stats'. You can set parameters by supplying \code{glm.args=list(arg1=val1,arg2=val2)} (see \code{\link[stats]{glm}} for all settable arguments).
#'  The following parameters have defaults: \describe{
#'  \item{test}{character. Test used to evaluate the SDM, default 'AIC'.}
#'  \item{control}{list (created with \code{\link[stats]{glm.control}}).
#'  Contains parameters for controlling the fitting process. Default is \code{glm.control(epsilon = 1e-08, maxit = 500)}.
#'  'epsilon' is a numeric and defines the positive convergence tolerance (eps).
#'  'maxit' is an integer giving the maximal number of IWLS (Iterative Weighted Last Squares) iterations.} }
#'
#'@section Generalized additive model (\strong{GAM}) : Uses the \code{gam}
#'  function from the package 'mgcv'. You can set parameters by supplying \code{gam.args=list(arg1=val1,arg2=val2)} (see \code{\link[mgcv]{gam}} for all settable arguments).
#'  The following parameters have defaults: \describe{\item{test}{character.
#'  Test used to evaluate the model, default 'AIC'.} \item{control}{list (created with \code{\link[mgcv]{gam.control}}).
#'  Contains parameters for controlling the fitting process. Default is \code{gam.control(epsilon = 1e-08, maxit = 500)}.
#'  'epsilon' is a numeric used for judging the conversion of the GLM IRLS (Iteratively Reweighted Least Squares) loop. 'maxit' is an integer giving the maximum number of IRLS iterations to perform.} }
#'
#'@section Multivariate adaptive regression splines (\strong{MARS}) : Uses the
#'  \code{earth} function from the package 'earth'. You can set parameters by supplying \code{mars.args=list(arg1=val1,arg2=val2)} (see \code{\link[earth]{earth}} for all settable arguments).
#'  The following parameters have defaults: \describe{
#'  \item{degree}{integer. Maximum degree of interaction (Friedman's mi) ; 1
#'  meaning build an additive model (i.e., no interaction terms). By default,
#'  set to 2.} }
#'
#'@section Generalized boosted regressions model (\strong{GBM}) : Uses the
#'  \code{gbm} function from the package 'gbm'. You can set parameters by supplying \code{gbm.args=list(arg1=val1,arg2=val2)} (see \code{\link[gbm]{gbm}} for all settable arguments).
#'  The following parameters have defaults: \describe{
#'  \item{distribution}{character. Automatically detected from the format of the presence column in the occurrence dataset.}
#'  \item{n.trees}{integer. The total number of trees to fit. This is equivalent
#'  to the number of iterations and the number of basis functions in the
#'  additive expansion. By default, set to 2500.}
#'  \item{n.minobsinnode}{integer.
#'  minimum number of observations in the trees terminal nodes. Note that this
#'  is the actual number of observations, not the total weight. By default, set
#'  to 1.}
#'  \item{cv.folds}{integer. Number of cross-validation folds to perform.
#'  If cv.folds>1 then gbm - in addition to the usual fit - will perform a
#'  cross-validation. By default, set to 3.}
#'  \item{shrinkage}{numeric. A shrinkage parameter applied to each tree in the expansion (also known as learning rate or step-size reduction). By default, set to 0.001.}
#'  \item{bag.fraction}{numeric. Fraction of the training set observations randomly selected to propose the next tree in the expansion.}
#'  \item{train.fraction}{numeric. Training fraction used to fit the first gbm. The remainder is used to compute out-of-sample estimates of the loss function. By default, set to 1 (since evaluation/holdout is done with \code{SSDM::evaluate}.}
#'  \item{n.cores}{integer. Number of cores to use for parallel computation of the CV folds. By default, set to 1. If you intend to use this, please set \code{ncores=0} to avoid conflicts.} }
#'
#'@section Classification tree analysis (\strong{CTA}) : Uses the \code{rpart}
#'  function from the package 'rpart'. You can set parameters by supplying \code{cta.args=list(arg1=val1,arg2=val2)} (see \code{\link[rpart]{rpart}} for all settable arguments).
#'  The following parameters have defaults: \describe{
#'  \item{control}{list (created with \code{\link[rpart]{rpart.control}}).
#'  Contains parameters for controlling the rpart fit. The default is \code{rpart.control(minbucket=1, xval=3)}.
#'  'mibucket' is an integer giving the minimum number of observations in any
#'  terminal node. 'xval' is an integer defining the number of
#'  cross-validations.} }
#'
#'@section Random Forest (\strong{RF}) : Uses the \code{randomForest} function
#'  from the package 'randomForest'. You can set parameters by supplying \code{cta.args=list(arg1=val1,arg2=val2)} (see \code{\link[randomForest]{randomForest}} all settable arguments).
#'  The following parameters have defaults: \describe{
#'  \item{ntree}{integer. Number of trees to grow. This should not be set to a
#'  too small number, to ensure that every input row gets predicted at least a
#'  few times. By default, set to 2500.}
#'  \item{nodesize}{integer. Minimum size of terminal nodes. Setting this number larger causes smaller trees to be grown (and thus take less time). By default, set to 1.} }
#'
#'@section Maximum Entropy (\strong{MAXENT}) : Uses the \code{maxent} function
#'  from the package 'dismo'. Make sure that you have correctly installed the
#'  maxent.jar file in the folder ~\\R\\library\\version\\dismo\\java available
#'  at \url{https://biodiversityinformatics.amnh.org/open_source/maxent/}. As with the other algorithms, you can set parameters by supplying \code{maxent.args=list(arg1=val1,arg2=val2)}. Mind that arguments are passed from dismo to the MAXENT software again as an argument list  (see \code{\link[dismo]{maxent}} for more details).
#'  No specific defaults are set with this method.
#'
#'@section Artificial Neural Network (\strong{ANN}) : Uses the \code{nnet}
#'  function from the package 'nnet'. You can set parameters by supplying \code{ann.args=list(arg1=val1,arg2=val2)} (see \code{\link[nnet]{nnet}} for all settable arguments).
#'  The following parameters have defaults: \describe{
#'  \item{size}{integer. Number of units in the hidden layer. By default, set to 6.}
#'  \item{maxit}{integer. Maximum number of iterations, default 500.} }
#'
#'@section Support vector machines (\strong{SVM}) : Uses the \code{svm} function
#'  from the package 'e1071'. You can set parameters by supplying \code{svm.args=list(arg1=val1,arg2=val2)} (see \code{\link[e1071]{svm}} for all settable arguments).
#'  The following parameters have defaults: \describe{
#'  \item{type}{character. Regression/classification type SVM should be used with. By default, set to "eps-regression".}
#'  \item{epsilon}{float. Epsilon parameter in the insensitive loss function, default 1e-08.}
#'  \item{cross}{integer. If an integer value k>0 is specified, a k-fold
#'  cross-validation on the training data is performed to assess the quality of
#'  the model: the accuracy rate for classification and the Mean Squared Error
#'  for regression. By default, set to 3.}
#'  \item{kernel}{character. The kernel used in training and predicting. By default, set to "radial".}
#'  \item{gamma}{numeric. Parameter needed for all kernels, default \code{1/(length(data) -1)}.} }
#'
#'@section Warning : Depending on the raster object resolution the process can
#'  be more or less time and memory consuming.
#'
#' @examples
#' # Loading data
#' data(Env)
#' data(Occurrences)
#' Occurrences <- subset(Occurrences, Occurrences$SPECIES == 'elliptica')
#'
#' # SDM building
#' SDM <- modelling('GLM', Occurrences, Env, Xcol = 'LONGITUDE', Ycol = 'LATITUDE')
#'
#' # Results plotting
#' \dontrun{
#' plot(SDM)
#' }
#'
#'
#'@seealso \code{\link{ensemble_modelling}} to build ensemble SDMs,
#'  \code{\link{stack_modelling}} to build SSDMs.
#'
#'@references M. Barbet-Massin, F. Jiguet, C. H.  Albert, & W. Thuiller (2012)
#'  'Selecting pseudo-absences for species distribution models: how, where and
#'  how many?' \emph{Methods Ecology and Evolution} 3:327-338
#'  \url{http://onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2011.00172.x/full}
#'
#'
#'
#'
#'
#'
#'
#'  C. Liu, P. M. Berry, T. P. Dawson,  R. & G. Pearson (2005) 'Selecting
#'  thresholds of occurrence in the prediction of species distributions.'
#'  \emph{Ecography} 28:85-393
#'  \url{http://www.researchgate.net/publication/230246974_Selecting_Thresholds_of_Occurrence_in_the_Prediction_of_Species_Distributions}
#'
#'
#'
#'
#'
#'
#'
#'@export
modelling <- function(algorithm, Occurrences, Env, Xcol = "Longitude",
                      Ycol = "Latitude", Pcol = NULL, name = NULL, PA = NULL, cv = "holdout",
                      cv.param = c(0.7, 2), final.fit.data ='all', bin.thresh = 'SES', metric = NULL, thresh = 1001, axes.metric = "Pearson",
                      select = FALSE, select.metric = c("AUC"), select.thresh = c(0.75),
                      verbose = TRUE, GUI = FALSE, ...) {
  # Check arguments
  .checkargs(Xcol = Xcol, Ycol = Ycol, Pcol = Pcol, name = name, PA = PA,
             cv = cv, cv.param = cv.param, final.fit.data=final.fit.data, bin.thresh=bin.thresh, metric = metric, thresh = thresh,
             axes.metric = axes.metric, select = select, select.metric = select.metric,
             select.thresh = select.thresh, verbose = verbose, GUI = GUI)

  # Test if algorithm is available
  available.algo <- c("GLM", "GAM", "MARS", "GBM", "CTA", "RF", "MAXENT",
                      "ANN", "SVM")
  if (algorithm == "all") {
    algorithm <- available.algo
  }
  if (!(algorithm %in% available.algo)) {
    stop(algorithm, " is still not available, please use one of those : GLM, GAM, MARS, GBM, CTA, RF, MAXENT, ANN, SVM")
  }

  # Empty Algorithm niche model object creation
  model <- Algorithm.SDM(algorithm)
  if (!is.null(name)) {
    name <- paste0(name, ".")
  }
  model@name <- paste0(name, algorithm, ".SDM")
  model@parameters$data <- "presence/absence data set"
  if(!is.null(metric)){
    model@parameters$metric <- metric
  } else {
    model@parameters$metric <- bin.thresh
  }

  if (verbose) {
    cat("Data check ... \n")
  }
  # Occurrences data input test | Data frame needed
  if (is.matrix(Occurrences)) {
    Occurrences <- data.frame(Occurrences)
  }
  if (!is.data.frame(Occurrences)) {
    stop("Occurrences data set is not a data frame or a matrix")
  }
  if ((Xcol %in% names(Occurrences)) == FALSE) {
    stop("X column is not well defined")
  }
  if ((Ycol %in% names(Occurrences)) == FALSE) {
    stop("Y column is not well defined")
  }
  if (is.null(Pcol)) {
    PO <- TRUE  # Presence only
    if (verbose) {
      cat("No presence column, presence-only data set is supposed.\n")
    }
    model@parameters$data <- "presence-only data set"
  } else if ((Pcol %in% names(Occurrences)) == FALSE) {
    stop("Presence column is not well defined")
  } else {
    PO <- FALSE
  }
  if (!is.null(PA)) {
    PO <- TRUE
  }
  if (PO) {
    if (verbose) {
      cat("Pseudo-absence selection will be computed.\n")
    }
  }
  data <- data.frame(X = Occurrences[which(names(Occurrences) == Xcol)],
                     Y = Occurrences[which(names(Occurrences) == Ycol)])
  names(data) <- c("X", "Y")
  if (PO) {
    data$Presence <- 1
  } else {
    data$Presence <- Occurrences[, which(names(Occurrences) == Pcol)]
  }

  # Environment data input test | RasterStack needed
  if (inherits(Env, "Raster")) {
    Env <- stack(Env)
  }
  if (!inherits(Env, "RasterStack")) {
    stop("Environment data set is not a raster or a raster stack")
  }
  if (verbose) {
    cat("   done. \n\n")
  }
  if (GUI) {
    incProgress(1/5, detail = "Data checked")
  }

  # Pseudo - absences selection
  model@data <- data
  if (PO) {
    if (verbose) {
      cat("Pseudo absence selection... \n")
    }
    model <- PA.select(model, Env, PA, verbose)
    model@parameters["PA"] <- TRUE
    if (verbose) {
      cat("   done. \n\n")
    }
    if (GUI) {
      incProgress(1/5, detail = "Pseudo-absence selected")
    }
  }
  model <- data.values(model, Env)

  # Evaluation
  if (verbose) {
    cat("Model evaluation...\n")
  }
  model <- evaluate(model, cv, cv.param, final.fit.data, bin.thresh, metric, thresh, Env, ...)
  if (verbose) {
    cat("   done. \n\n")
  }
  if (GUI) {
    incProgress(1/5, detail = "SDM evaluated")
  }

  # Model selection
  test <- TRUE
  if (select) {
    for (j in seq_len(length(select.metric))) {
      if (model@evaluation[, which(names(model@evaluation) == select.metric[j])] <
          select.thresh[j]) {
        test <- FALSE
      }
    }
  }
  if (test) {
    # Projection
    if (verbose) {
      cat("Model projection...\n")
    }
    model <- project(model, Env, ...)
    if (verbose) {
      cat("   done. \n\n")
    }
    if (GUI) {
      incProgress(1/5, detail = "SDM projected")
    }

    # Axes evaluation
    if (verbose) {
      cat("Model axes contribution evaluation...\n")
    }
    model <- evaluate.axes(model, cv, cv.param, final.fit.data, bin.thresh, metric, thresh, axes.metric, Env, ...)
    if (verbose) {
      cat("   done. \n\n")
    }
    if (GUI) {
      incProgress(1/5, detail = "SDM axes contribution evaluated")
    }
    rm(list = ls()[-which(ls() == "model")])
    gc()
    return(model)
  } else {
    if (verbose) {
      cat("Model has been rejected, NULL is returned ! \n")
    }
    if (GUI) {
      incProgress(2/5, detail = "SDM rejected")
    }
    rm(list = ls())
    gc()
    return(NULL)
  }
}
sylvainschmitt/SSDM documentation built on Oct. 25, 2023, 11:19 p.m.