#' keras gru cnn
#'
#' Word embedding + gru global average & max + 1D pooled convolution
#'
#' @param input_dim Number of unique vocabluary/tokens
#' @param embed_dim Number of word vectors
#' @param seq_len Length of the input sequences
#' @param gru_dim Number of lstm neurons (default 32)
#' @param gru_drop default is 2
#' @param n_filters the number of convolutional filters
#' @param filter_size the window size (kernel_size)
#' @param pool_size pooling dimension (filters)
#' @param output_dim Number of neurons of the output layer
#' @param output_fun Output activation function
#' @return keras model
#'
#' @export
keras_gru_cnn <- function(
input_dim, embed_dim = 128, seq_len = 50,
gru_dim = 64, gru_drop = .2, #bidirectional = T,
filter_sizes = c(3, 2), n_filters = c(120, 60), pool_size = 4,
output_fun = "softmax", output_dim = 1
){
input <- keras::layer_input(shape = seq_len, dtype = "int32", name = "input")
embedding <- input %>%
keras::layer_embedding(
input_dim = input_dim,
output_dim = embed_dim
#input_length = seq_len
) %>%
keras::layer_spatial_dropout_1d(rate = .1)
block1 <- embedding %>%
keras::bidirectional(keras::layer_gru(units = gru_dim, return_sequences = T, recurrent_dropout = gru_drop)) %>%
keras::layer_conv_1d(n_filters[1], filter_sizes[1], padding = "valid", activation = "relu", strides = 1)
block2 <- embedding %>%
keras::bidirectional(keras::layer_gru(units = gru_dim, return_sequences = T, recurrent_dropout = gru_drop)) %>%
keras::layer_conv_1d(n_filters[2], filter_sizes[2], padding = "valid", activation = "relu", strides = 1)
max_pool1 <- block1 %>% keras::layer_global_max_pooling_1d()
ave_pool1 <- block1 %>% keras::layer_global_average_pooling_1d()
max_pool2 <- block2 %>% keras::layer_global_max_pooling_1d()
ave_pool2 <- block2 %>% keras::layer_global_average_pooling_1d()
output <- keras::layer_concatenate(list(ave_pool1, max_pool1, ave_pool2, max_pool2)) %>%
keras::layer_dense(units = output_dim, activation = output_fun)
model <- keras::keras_model(input, output)
return(model)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.