Description Usage Arguments Details Value References Examples
Fits the modified Michaelis-Menten equation (MM), a logistic regession (logistic), or a double exponential (ZIFA) function to the relationship between mean expression and dropout-rate (proportion of zero values).
1 | M3DropDropoutModels(expr_mat, xlim=NA, suppress.plot=FALSE)
|
expr_mat |
a numeric matrix of normalized (not log-transformed) expression values, columns = samples, rows = genes. |
xlim |
limits for x-axis of plot. |
suppress.plot |
logical, whether to plot fit curves or not. |
Plots the dropout-rate (P) vs average gene expression (S) for all genes. Fits three different models and adds the fitted curves to the plot. The three models are: MMfit : the Michaelis-Menten function
P = 1 - S/(K+S)
(see: [1]). LogiFit : a logistic regression between P and log base 10 of S (used by [2]). ExpoFit : a double exponential
P = e^(-lambda*S^2)
(used by [3]).
Invisibly, a list of output from each fit (MMfit, LogiFit, ExpoFit).
[1] Keener, J.; Sneyd, J. (2008). Mathematical Physiology: I: Cellular Physiology (2 ed.). Springer. ISBN 978-0-387-75846-6 [2] Kharchenko, PV; Silberstein, L; Scadden, DT. (2014) Bayesian approach to single-cell differential expression analysis. Nature Methods. 11:740-742 [3] Pierson, E; Yau, C. (2015) ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biology. 16:241 doi:10.1186/s13059-015-0805-z
1 2 3 | library(M3DExampleData)
norm <- M3DropConvertData(Mmus_example_list$data, is.counts=TRUE)
M3DropDropoutModels(norm)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.