Description Usage Arguments Details Value Examples
Ranks genes by significance of increase in dropouts compared to expectation.
1 2 |
fit |
output from NBumiFitModel or NBumiFitBasicModel. |
Calculates dropout probability for each observation using depth-adjusted negative binomial means and dispersions equal to the mean (Poisson). Total dropouts per gene are modelled using the normal approximation of the sum of bernoulli variables. And significance is evaluated using a Z-test.
Sorted vector of p-values
1 2 3 4 5 | library(M3DExampleData)
counts <- as.matrix(Mmus_example_list$data);
counts <- counts[rowSums(counts) > 0,];
fit <- NBumiFitModel(counts);
Dropout_features <- names(PoissonUMIFeatureSelectionDropouts(fit)[1:2000]);
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.