Description Usage Arguments Details Value Note Author(s) Examples
This function summarizes basic model fit information for a fit bigsplines model.
1 2 3 4 5 6 7 8 9 10  | ## S3 method for class 'bigspline'
summary(object,fitresid=TRUE,chunksize=10000,...)
## S3 method for class 'bigssa'
summary(object,fitresid=TRUE,chunksize=10000,...)
## S3 method for class 'bigssg'
summary(object,fitresid=TRUE,chunksize=10000,...)
## S3 method for class 'bigssp'
summary(object,fitresid=TRUE,chunksize=10000,...)
## S3 method for class 'bigtps'
summary(object,fitresid=TRUE,chunksize=10000,...)
 | 
object | 
 Object of class "bigspline" (output from   | 
fitresid | 
 Logical indicating whether the fitted values and residuals should be calculated for all data points in input   | 
chunksize | 
 If   | 
... | 
 Ignored.  | 
See bigspline, bigssa, bigssg, bigssp, and bigtps for more details.
call | 
 Called model in input   | 
type | 
 Type of smoothing spline that was used for each predictor.  | 
fitted.values | 
 Vector of fitted values (if   | 
linear.predictors | 
 Vector of linear predictors (only for class "bigssg" with   | 
residuals | 
 Vector of residuals (if   | 
sigma | 
 Estimated error standard deviation.  | 
deviance | 
 Model deviance (only for class "bigssg").  | 
dispersion | 
 Estimated dispersion parameter (only for class "bigssg").  | 
n | 
 Total sample size.  | 
df | 
 Effective degrees of freedom of the model.  | 
info | 
 Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model.  | 
converged | 
 Convergence status:   | 
iter | 
 Number of iterative updates (  | 
rparm | 
 Rounding parameters used for model fitting.  | 
lambda | 
 Global smoothing parameter used for model fitting.  | 
gammas | 
 Vector of additional smoothing parameters (only for class "bigssa").  | 
thetas | 
 Vector of additional smoothing parameters (only for class "bigssp").  | 
family | 
 Distribution family (only for class "bigssg").  | 
gcvtype | 
 Smoothing parameter selection criterion (only for class "bigssg").  | 
For "bigspline" and "bigtps" objects, the outputs call, converged, and iter are NA.
Nathaniel E. Helwig <helwig@umn.edu>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78  | ##########   EXAMPLE 1   ##########
# define relatively smooth function
set.seed(773)
myfun <- function(x){ sin(2*pi*x) }
x <- runif(10^4)
y <- myfun(x) + rnorm(10^4)
# cubic spline
cubmod <- bigspline(x,y)
summary(cubmod)
##########   EXAMPLE 2   ##########
# function with two continuous predictors
set.seed(773)
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
x1v <- runif(10^4)
x2v <- runif(10^4)
y <- myfun(x1v,x2v) + rnorm(10^4)
# cubic splines with 100 randomly selected knots (efficient parameterization)
cubmod <- bigssa(y~x1v*x2v,type=list(x1v="cub",x2v="cub"),nknots=100)
summary(cubmod)
##########   EXAMPLE 3   ##########
# function with two continuous predictors
set.seed(1)
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
ndpts <- 1000
x1v <- runif(ndpts)
x2v <- runif(ndpts)
# poisson response
set.seed(773)
lp <- myfun(x1v,x2v)
mu <- exp(lp)
y <- rpois(n=ndpts,lambda=mu)
# generalized smoothing spline anova
genmod <- bigssg(y~x1v*x2v,family="poisson",type=list(x1v="cub",x2v="cub"),nknots=50)
summary(genmod)
##########   EXAMPLE 4   ##########
# function with two continuous predictors
set.seed(773)
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
x1v <- runif(10^4)
x2v <- runif(10^4)
y <- myfun(x1v,x2v) + rnorm(10^4)
# cubic splines with 100 randomly selected knots (classic parameterization)
cubmod <- bigssp(y~x1v*x2v,type=list(x1v="cub",x2v="cub"),nknots=100)
summary(cubmod)
##########   EXAMPLE 5   ##########
# define relatively smooth function
set.seed(773)
myfun <- function(x){ sin(2*pi*x) }
x <- runif(10^4)
y <- myfun(x) + rnorm(10^4)
# thin-plate with default (30 knots)
tpsmod <- bigtps(x,y)
summary(tpsmod)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.