param.prior.make.mean <- function(param.m = 0, param.c = 1, const.var = 1, ...){
##y ~ Norm(theta, const.var), theta~Norm(param.m, param.c)
if(!is.numeric(param.m) || length(param.m) != 1 || anyNA(param.m))
stop("Hyper-parameter `param.m` specified incorrectly.")
if(!is.numeric(param.c) || length(param.c) != 1 || any(param.c <= 0) || anyNA(param.c))
stop("Hyper-parameter `param.c` specified incorrectly.")
if(!is.numeric(const.var) || length(const.var) != 1 || any(const.var <= 0) || anyNA(const.var))
stop("Known constant `const.var` is specified incorrectly.")
out <- c("param.m" = param.m, "param.c" = param.c, "const.var" = const.var)
return(out)
}
PeriodCPT.mean <- function(data, periodlength = NULL, minseglen = 1, Mprior = c("pois", "unif"),
Mhyp = 1, spread = 1, param.m = 0, param.c = 1, const.var = 1,
inits = NULL, n.iter = 1e6, n.chains = 1, n.burn = 0,
cachesize=50, quiet=FALSE, ...){
distribution <- "mean"
nsegparam <- 1
Mprior <- Mprior[1]
if(missing(data)) stop("Data is missing.")
ans <- class_input(data = data, periodlength = periodlength, minseglen = minseglen,
distribution = distribution, nsegparam = nsegparam, Mprior = Mprior, Mhyp = Mhyp,
spread = spread, inits = inits, n.iter = n.iter,
n.chains = n.chains, n.burn = n.burn, cachesize = cachesize,
quiet = quiet, param.m = param.m, param.c = param.c,
const.var = const.var, ...)
ans <- PeriodCPT.main(ans)
return(ans)
}
data_value_check.mean <- function(object){
if(!is.numeric(data.set(object)))
stop(paste0("Data is invalid for '",distribution(object),"' sampling distribution."))
if("levels" %in% names(attributes(data.set(object))))
stop(paste0("Data is invalid for '",distribution(object),"' sampling distribution."))
if(is.matrix(data.set(object))){
if(ncol(data.set(object)) > 1){
stop(paste0("Data is invalid for '",distribution(object),"' sampling distribution."))
}else{
data.set(object) <- data.set(object)[,1]
}
}
return(object)
}
FNs.mean <- function(x, prob, SSinfo, param.prior = NULL, index = 1){
q <- rep(NA,length(x))
for(i in 1:length(x)){
px <- pnorm(x[i], mean = SSinfo[,"M"], sd = sqrt(SSinfo[,"C"]*param.prior["const.var"]))
p <- sum(px*SSinfo[,"freq"])/sum(SSinfo[,"freq"])
q[i] <- p - prob
}
return(q)
}
get_FNs.mean <- function(){return(FNs.mean)}
RNG.mean <- function(prob, SSinfo, param.prior = NULL, index = 1){
q <- qnorm(prob, mean = SSinfo[,"M"], sd = sqrt(SSinfo[,"C"]*param.prior["const.var"]))
return(range(q))
}
plot.est.format.mean <- function(object, probs = 0.5, param = 0){
out <- quantile(object, probs = probs)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.