# bigplotfix.R
# 28 Nov 2016
# This file defines a wrapper for plot.xy which checks if the input
# data is longer than a certain maximum limit. If it is, it is
# downsampled before plotting. For 3 million input points, I got
# speed-ups of 10-100x. Note that if you want the output to look the
# same as the "uncompressed" version, you should be drawing lines,
# because the compression involves taking maximum and minimum values
# of blocks of points (try running test_bigplotfix() for a visual
# explanation). Also, no sorting is done on the input points, so
# things could get weird if they are out of order.
test_bigplotfix = function() {
oldpar=par();
par(mfrow=c(2,2))
n=1e5;
r=runif(n)
bigplotfix_verbose<<-T
mytitle=function(t,m) { title(main=sprintf("%s; elapsed=%0.4f s",m,t["elapsed"])) }
mytime=function(m,e) { t=system.time(e); mytitle(t,m); }
oldbigplotfix_maxlen = bigplotfix_maxlen
bigplotfix_maxlen <<- 1e2;
mytime("Compressed, points",plot(r));
mytime("Compressed, lines",plot(r,type="l"));
bigplotfix_maxlen <<- n
mytime("Uncompressed, points",plot(r));
mytime("Uncompressed, lines",plot(r,type="l"));
par(oldpar);
bigplotfix_maxlen <<- oldbigplotfix_maxlen
bigplotfix_verbose <<- F
}
bigplotfix_verbose=F
downsample_xy = function(xy, n, xlog=F) {
msg=if(bigplotfix_verbose) { message } else { function(...) { NULL } }
msg("Finding range");
r=range(xy$x);
msg("Finding breaks");
if(xlog) {
breaks=exp(seq(from=log(r[1]),to=log(r[2]),length.out=n))
} else {
breaks=seq(from=r[1],to=r[2],length.out=n)
}
msg("Calling findInterval");
## cuts=cut(xy$x,breaks);
# findInterval is much faster than cuts!
cuts = findInterval(xy$x,breaks);
if(0) {
msg("In aggregate 1");
dmax = aggregate(list(x=xy$x, y=xy$y), by=list(cuts=cuts), max)
dmax$cuts = NULL;
msg("In aggregate 2");
dmin = aggregate(list(x=xy$x, y=xy$y), by=list(cuts=cuts), min)
dmin$cuts = NULL;
} else { # use data.table for MUCH faster aggregates
# (see http://stackoverflow.com/questions/7722493/how-does-one-aggregate-and-summarize-data-quickly)
suppressMessages(library(data.table))
msg("In data.table");
dt = data.table(x=xy$x,y=xy$y,cuts=cuts)
msg("In data.table aggregate 1");
dmax = dt[,list(x=max(x),y=max(y)),keyby="cuts"]
dmax$cuts=NULL;
msg("In data.table aggregate 2");
dmin = dt[,list(x=min(x),y=min(y)),keyby="cuts"]
dmin$cuts=NULL;
# ans = data_t[,list(A = sum(count), B = mean(count)), by = 'PID,Time,Site']
}
msg("In rep, rbind");
# interleave rows (copied from a SO answer)
s <- rep(1:n, each = 2) + (0:1) * n
xy = rbind(dmin,dmax)[s,];
xy
}
library(graphics);
# make sure we don't create infinite recursion if someone sources
# this file twice
if(!exists("old_plot.xy")) {
old_plot.xy = graphics::plot.xy
}
bigplotfix_maxlen = 1e4
# formals copied from graphics::plot.xy
my_plot.xy = function(xy, type, pch = par("pch"), lty = par("lty"),
col = par("col"), bg = NA, cex = 1, lwd = par("lwd"),
...) {
if(bigplotfix_verbose) {
message("In bigplotfix's plot.xy\n");
}
mycall=match.call();
len=length(xy$x)
if(len>bigplotfix_maxlen) {
warning("bigplotfix.R (plot.xy): too many points (",len,"), compressing to ",bigplotfix_maxlen,"\n");
xy = downsample_xy(xy, bigplotfix_maxlen, xlog=par("xlog"));
mycall$xy=xy
}
mycall[[1]]=as.symbol("old_plot.xy");
eval(mycall,envir=parent.frame());
}
# new binding solution adapted from Henrik Bengtsson
# https://stat.ethz.ch/pipermail/r-help/2008-August/171217.html
rebindPackageVar = function(pkg, name, new) {
# assignInNamespace() no longer works here, thanks nannies
ns=asNamespace(pkg)
unlockBinding(name,ns)
assign(name,new,envir=asNamespace(pkg),inherits=F)
assign(name,new,envir=globalenv())
lockBinding(name,ns)
}
rebindPackageVar("graphics", "plot.xy", my_plot.xy)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.