R/geom-abline.r

Defines functions geom_abline

Documented in geom_abline

#' @include stat-.r
NULL

#' Lines: horizontal, vertical, and specified by slope and intercept.
#'
#' These paired geoms and stats add straight lines to a plot, either
#' horizontal, vertical or specified by slope and intercept. These are useful
#' for annotating plots.
#'
#' These geoms act slightly different to other geoms. You can supply the
#' parameters in two ways: either as arguments to the layer function,
#' or via aesthetics. If you use arguments, e.g.
#' \code{geom_abline(intercept = 0, slope = 1)}, then behind the scenes
#' the geom makes a new data frame containing just the data you've supplied.
#' That means that the lines will be the same in all facets; if you want them
#' to vary across facets, construct the data frame yourself and use aesthetics.
#'
#' Unlike most other geoms, these geoms do not inherit aesthetics from the plot
#' default, because they do not understand x and y aesthetics which are
#' commonly set in the plot. They also do not affect the x and y scales.
#'
#' @section Aesthetics:
#' These geoms are drawn using with \code{\link{geom_line}} so support the
#' same aesthetics: alpha, colour, linetype and size. They also each have
#' aesthetics that control the position of the line:
#'
#' \itemize{
#'   \item \code{geom_vline}: \code{xintercept}
#'   \item \code{geom_hline}: \code{yintercept}
#'   \item \code{geom_abline}: \code{slope} and \code{intercept}
#' }
#'
#' @seealso See \code{\link{geom_segment}} for a more general approach to
#'   adding straight line segments to a plot.
#' @inheritParams layer
#' @inheritParams geom_point
#' @param xintercept,yintercept,slope,intercept Parameters that control the
#'   position of the line. If these are set, \code{data}, \code{mapping} and
#'   \code{show.legend} are overridden
#' @export
#' @examples
#' p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()
#'
#' # Fixed values
#' p + geom_vline(xintercept = 5)
#' p + geom_vline(xintercept = 1:5)
#' p + geom_hline(yintercept = 20)
#'
#' p + geom_abline() # Can't see it - outside the range of the data
#' p + geom_abline(intercept = 20)
#'
#' # Calculate slope and intercept of line of best fit
#' coef(lm(mpg ~ wt, data = mtcars))
#' p + geom_abline(intercept = 37, slope = -5)
#' # But this is easier to do with geom_smooth:
#' p + geom_smooth(method = "lm", se = FALSE)
#'
#' # To show different lines in different facets, use aesthetics
#' p <- ggplot(mtcars, aes(mpg, wt)) +
#'   geom_point() +
#'   facet_wrap(~ cyl)
#'
#' mean_wt <- data.frame(cyl = c(4, 6, 8), wt = c(2.28, 3.11, 4.00))
#' p + geom_hline(aes(yintercept = wt), mean_wt)
#'
#' # You can also control other aesthetics
#' ggplot(mtcars, aes(mpg, wt, colour = wt)) +
#'   geom_point() +
#'   geom_hline(aes(yintercept = wt, colour = wt), mean_wt) +
#'   facet_wrap(~ cyl)
geom_abline <- function(mapping = NULL, data = NULL,
                        ...,
                        slope,
                        intercept,
                        na.rm = FALSE,
                        show.legend = NA) {

  # If nothing set, default to y = x
  if (missing(mapping) && missing(slope) && missing(intercept)) {
    slope <- 1
    intercept <- 0
  }

  # Act like an annotation
  if (!missing(slope) || !missing(intercept)) {
    if (missing(slope)) slope <- 1
    if (missing(intercept)) intercept <- 0

    data <- data.frame(intercept = intercept, slope = slope)
    mapping <- aes(intercept = intercept, slope = slope)
    show.legend <- FALSE
  }

  layer(
    data = data,
    mapping = mapping,
    stat = StatIdentity,
    geom = GeomAbline,
    position = PositionIdentity,
    show.legend = show.legend,
    inherit.aes = FALSE,
    params = list(
      na.rm = na.rm,
      ...
    )
  )
}

#' @rdname animint2-gganimintproto
#' @format NULL
#' @usage NULL
#' @export
GeomAbline <- gganimintproto("GeomAbline", Geom,
  draw_panel = function(data, panel_scales, coord) {
    ranges <- coord$range(panel_scales)
    data$x    <- ranges$x[1]
    data$xend <- ranges$x[2]
    data$y    <- ranges$x[1] * data$slope + data$intercept
    data$yend <- ranges$x[2] * data$slope + data$intercept
    GeomSegment$draw_panel(unique(data), panel_scales, coord)
  },
  pre_process = function(g, g.data, ranges) {
    range.mats <- list()
    for(xy in c("x","y")){
      range.mats[[xy]] <- do.call(rbind, lapply(ranges, "[[", paste0(xy, ".range")))[g.data$PANEL,,drop=FALSE]
    }
    suffix.list <- c("","end")
    for(idx in seq_along(suffix.list)){
      suffix <- suffix.list[[idx]]
      maybe.x <- range.mats$x[,idx]
      maybe.y <- maybe.x*g.data$slope+g.data$intercept
      inv <- function(y)(y-g.data$intercept)/g.data$slope
      g.data[[paste0("x",suffix)]] <- ifelse(
        maybe.y < range.mats$y[,1], inv(range.mats$y[,1]), ifelse(
          maybe.y > range.mats$y[,2], inv(range.mats$y[,2]), maybe.x))
      g.data[[paste0("y",suffix)]] <- ifelse(
        maybe.y < range.mats$y[,1], range.mats$y[,1], ifelse(
          maybe.y > range.mats$y[,2], range.mats$y[,2], maybe.y))
    }
    ## ggplot2 defaults to adding a group aes for ablines!
    ## Remove it since it is meaningless.
    g$aes <- g$aes[names(g$aes)!="group"]
    g.data <- g.data[! names(g.data) %in% c("slope", "intercept")]
    g$geom <- "segment"
    return(list(g = g, g.data = g.data))
  },
  default_aes = aes(colour = "black", size = 0.5, linetype = 1, alpha = NA),
  required_aes = c("slope", "intercept"),
  draw_key = draw_key_abline
)
tdhock/animint2 documentation built on July 4, 2025, 7:40 a.m.