R/ParseOutput.R

Defines functions anansi.p.adjust result.df frame.tale.ols frame.tale.cor frame.tale tell_dfr tell_df2 tell_df1 tell_e tell_P tell_T tell_F

#' @noRd
#'
tell_F <- function(tale) {
    if (is(tale, "anansiTale")) {
        return(tale@f.values)
    }
    if (is.list(tale)) {
        return(lapply(tale, tell_F))
    }
}

#' @noRd
#'
tell_T <- function(tale) {
    if (is(tale, "anansiTale")) {
        return(tale@t.values)
    }
    if (is.list(tale)) {
        return(lapply(tale, tell_T))
    }
}

#' @noRd
#'
tell_P <- function(tale) {
    if (is(tale, "anansiTale")) {
        return(tale@p.values)
    }
    if (is.list(tale)) {
        return(lapply(tale, tell_P))
    }
}


#' @noRd
#'
tell_e <- function(tale) {
    if (is(tale, "anansiTale")) {
        return(tale@estimates)
    }
    if (is.list(tale)) {
        return(lapply(tale, tell_e))
    }
}


#' @noRd
#'
tell_df1 <- function(tale) {
    if (is(tale, "anansiTale")) {
        return(tale@df[1])
    }
    if (is.list(tale)) {
        return(lapply(tale, tell_df1))
    }
}

#' @noRd
#'
tell_df2 <- function(tale) {
    if (is(tale, "anansiTale")) {
        return(tale@df[2])
    }
    if (is.list(tale)) {
        return(lapply(tale, tell_df2))
    }
}

#' @noRd
#'
tell_dfr <- function(tale) {
    if (is(tale, "anansiTale")) {
        return(tale@df[3])
    }
    if (is.list(tale)) {
        return(lapply(tale, tell_dfr))
    }
}

#' Extract information from an anansiTale object and parse it into a neat table
#' @param tale An `anansiTale` object
#' @param dic A dictionary.
#' @noRd
#' @return A wide format data.frame with summary statistics by feature pair.
#'
frame.tale <- function(tale, dic) {
    switch(
        tale@type,
        "r.values" = frame.tale.cor(tale, dic),
        "r.squared" = frame.tale.ols(tale, dic)
    )
}

#' @noRd
#'
frame.tale.cor <- function(tale, dic) {
    out.df <- data.frame(
        r.values = tale@estimates[dic],
        t.values = tale@t.values[dic],
        p.values = tale@p.values[dic]
        # q.values =  tale@q.values[dic]
    )
    colnames(out.df) <- paste(tale@subject, colnames(out.df), sep = "_")
    return(out.df)
}

#' @noRd
#'
frame.tale.ols <- function(tale, dic) {
    out.df <- data.frame(
        r.squared = tale@estimates[dic],
        f.values = tale@f.values[dic],
        p.values = tale@p.values[dic]
        # q.values =  tale@q.values[dic]
    )
    colnames(out.df) <- paste(tale@subject, colnames(out.df), sep = "_")
    return(out.df)
}

#' Shape list of `anansiTale` results into a data.frame.
#' @noRd
#'
result.df <- function(out.list, dic) {
    feature_labs <- expand.grid(
        feature_Y = row.names(dic),
        feature_X = colnames(dic),
        stringsAsFactors = FALSE
    )[dic, ]

    df.list <- c(feature_labs, lapply(out.list, frame.tale, dic))
    do.call(what = "cbind.data.frame", args = df.list, quote = TRUE)
}

#' Handle FDR methods for anansi.
#' @param results The results table containing p-values to be adjusted.
#' @param method The p-value adjustment method. See ?p.adjust.
#' @return The `results` table, extended with adjusted p.values.
#' @importFrom stats p.adjust
#' @noRd
#'
anansi.p.adjust <- function(results, method) {
    p.cols <- grep("p.values", colnames(results))
    q.cols <- apply(results[, p.cols, drop = FALSE], 2, p.adjust, method)
    colnames(q.cols) <- gsub(
        "_p.values",
        "_q.values",
        x = colnames(q.cols),
        fixed = TRUE
    )
    cbind.data.frame(results, q.cols)
}
thomazbastiaanssen/anansi documentation built on June 9, 2025, 3:59 p.m.