# Function to create dataframe with uni and bivariate analysis ######
#' @import tidyr
makeTable<-function(quali.Univ_list.Global, group, pvalue, na.print,
parallel, mc.cores){
## Makes df out of the list
df<-dplyr::bind_rows(parallelFun(parallel, X = quali.Univ_list.Global, FUN = function(x){
tmp_df<-tibble::tibble("var" = c(x@parsed_name, x@missing.value.name),
"group_var" = c(x@value, x@missing.value), pvalue=c(x@pvalue, NA))
names(tmp_df)[names(tmp_df) == "group_var"]<-x@group_var
return(tmp_df)
}, mc.cores = mc.cores))
df<-subset(df, df[,"var"] != "")
#Keep only full columns and merge
for (n in colnames(df)){
if (n == "var" || n == "pvalue")
next
tmp<-df[!is.na(df[, n]), ] %>% dplyr::select_if(~ !any(is.na(.)))
if(!exists("tmp_df", inherits = FALSE))
tmp_df<-tmp
else
tmp_df<-merge(tmp_df, tmp, by = "var")
}
if (!is.null(group) && pvalue == TRUE)
tmp_df<-merge(tmp_df, unique(dplyr::select(df, "var", "pvalue"), by = "var"))
else
pvalue = FALSE
if (na.print == FALSE)
tmp_df<-tmp_df[!grepl(".*Missing values", tmp_df[,1]),]
df<-tmp_df
return (list("df" = df, "pvalue"= pvalue))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.