#' Impute numeric variables via a linear model
#'
#' `step_impute_linear()` creates a *specification* of a recipe step that will
#' create linear regression models to impute missing data.
#'
#' @inheritParams step_impute_bag
#' @inheritParams step_center
#' @param ... One or more selector functions to choose variables to be imputed;
#' these variables **must** be of type `numeric`. When used with `imp_vars`,
#' these dots indicate which variables are used to predict the missing data
#' in each variable. See [selections()] for more details.
#' @param models The [lm()] objects are stored here once the linear models
#' have been trained by [prep()].
#' @template step-return
#' @family imputation steps
#' @export
#' @details For each variable requiring imputation, a linear model is fit
#' where the outcome is the variable of interest and the predictors are any
#' other variables listed in the `impute_with` formula. Note that if a variable
#' that is to be imputed is also in `impute_with`, this variable will be ignored.
#'
#' The variable(s) to be imputed must be of type `numeric`. The imputed values
#' will keep the same type as their original data (i.e, model predictions are
#' coerced to integer as needed).
#'
#' Since this is a linear regression, the imputation model only uses complete
#' cases for the training set predictors.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms`, `model` , and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{model}{list, list of fitted `lm()` models}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-unsupervised
#'
#' @references Kuhn, M. and Johnson, K. (2013).
#' *Feature Engineering and Selection*
#' \url{https://bookdown.org/max/FES/handling-missing-data.html}
#' @examplesIf rlang::is_installed(c("modeldata", "ggplot2"))
#' data(ames, package = "modeldata")
#' set.seed(393)
#' ames_missing <- ames
#' ames_missing$Longitude[sample(1:nrow(ames), 200)] <- NA
#'
#' imputed_ames <-
#' recipe(Sale_Price ~ ., data = ames_missing) %>%
#' step_impute_linear(
#' Longitude,
#' impute_with = imp_vars(Latitude, Neighborhood, MS_Zoning, Alley)
#' ) %>%
#' prep(ames_missing)
#'
#' imputed <-
#' bake(imputed_ames, new_data = ames_missing) %>%
#' dplyr::rename(imputed = Longitude) %>%
#' bind_cols(ames %>% dplyr::select(original = Longitude)) %>%
#' bind_cols(ames_missing %>% dplyr::select(Longitude)) %>%
#' dplyr::filter(is.na(Longitude))
#'
#' library(ggplot2)
#' ggplot(imputed, aes(x = original, y = imputed)) +
#' geom_abline(col = "green") +
#' geom_point(alpha = .3) +
#' coord_equal() +
#' labs(title = "Imputed Values")
step_impute_linear <-
function(recipe,
...,
role = NA,
trained = FALSE,
impute_with = imp_vars(all_predictors()),
models = NULL,
skip = FALSE,
id = rand_id("impute_linear")) {
if (is.null(impute_with)) {
cli::cli_abort("{.arg impute_with} must not be empty.")
}
add_step(
recipe,
step_impute_linear_new(
terms = enquos(...),
role = role,
trained = trained,
impute_with = impute_with,
models = models,
skip = skip,
id = id,
case_weights = NULL
)
)
}
step_impute_linear_new <-
function(terms, role, trained, models, impute_with,
skip, id, case_weights) {
step(
subclass = "impute_linear",
terms = terms,
role = role,
trained = trained,
impute_with = impute_with,
models = models,
skip = skip,
id = id,
case_weights = case_weights
)
}
lm_wrap <- function(vars, dat, wts = NULL, call = caller_env(2)) {
dat <- as.data.frame(dat[, c(vars$y, vars$x)])
complete <- vec_detect_complete(dat)
dat <- dat[complete, ]
wts <- wts[complete]
if (nrow(dat) == 0) {
cli::cli_abort(
"The data did not have any rows where the imputation values were all \\
complete. Is is thus unable to fit the linear regression model.",
call = call
)
}
if (!is.numeric(dat[[vars$y]])) {
cli::cli_abort(
"Variable {.var {vars$y}} chosen for linear regression imputation \\
must be of type numeric. Not {.obj_type_friendly {vars$y}}.",
call = call
)
}
if (is.null(wts)) {
wts <- rep(1, nrow(dat))
} else {
wts <- as.double(wts)
}
out <- lm(as.formula(paste0(vars$y, "~", ".")), data = dat, weights = wts,
model = FALSE)
out$..imp_vars <- vars$x
attr(out$terms, ".Environment") <- rlang::base_env()
## remove other unneeded elements for predict
out$call <- NULL
out$assign <- NULL
out$fitted.values <- NULL
out$df.residual <- NULL
out$residuals <- NULL
out$qr$qr <- NULL
out$effects <- NULL
out
}
#' @export
prep.step_impute_linear <- function(x, training, info = NULL, ...) {
wts <- get_case_weights(info, training)
were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used)) {
wts <- NULL
}
var_lists <-
impute_var_lists(
to_impute = x$terms,
impute_using = x$impute_with,
training = training,
info = info
)
x$models <- lapply(
var_lists,
lm_wrap,
dat = training,
wts = wts
)
names(x$models) <- vapply(var_lists, function(x) x$y, c(""))
step_impute_linear_new(
terms = x$terms,
role = x$role,
trained = TRUE,
models = x$models,
impute_with = x$impute_with,
skip = x$skip,
id = x$id,
case_weights = were_weights_used
)
}
#' @export
bake.step_impute_linear <- function(object, new_data, ...) {
col_names <- names(object$models)
check_new_data(col_names, object, new_data)
missing_rows <- !vec_detect_complete(new_data)
if (!any(missing_rows)) {
return(new_data)
}
old_data <- new_data
for (col_name in col_names) {
missing_rows <- !vec_detect_complete(new_data[[col_name]])
if (!any(missing_rows)) {
next
}
preds <- object$models[[col_name]]$..imp_vars
pred_data <- old_data[missing_rows, preds, drop = FALSE]
## do a better job of checking this:
if (any(is.na(pred_data))) {
cli::cli_warn(
"There were missing values in the predictor(s) used to impute; \\
imputation did not occur."
)
} else {
pred_vals <- predict(object$models[[col_name]], pred_data)
pred_vals <- cast(pred_vals, new_data[[col_name]])
new_data[[col_name]] <- vec_cast(new_data[[col_name]], pred_vals)
new_data[missing_rows, col_name] <- pred_vals
}
}
new_data
}
#' @export
print.step_impute_linear <-
function(x, width = max(20, options()$width - 31), ...) {
title <- "Linear regression imputation for "
print_step(names(x$models), x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_impute_linear <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$models),
model = unname(x$models)
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, model = list(NULL))
}
res$id <- x$id
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.