library(testthat)
library(recipes)
test_that("defaults", {
skip_if_not_installed("ddalpha")
rec <- recipe(Species ~ ., data = iris) %>%
step_depth(all_predictors(), class = "Species", metric = "spatial", id = "")
trained <- prep(rec, training = iris, verbose = FALSE)
depths <- bake(trained, new_data = iris)
depths <- depths[, grepl("depth", names(depths))]
depths <- as.data.frame(depths)
split_up <- split(iris[, 1:4], iris$Species)
spatial <- function(x, y) {
ddalpha::depth.spatial(x = y, data = x)
}
exp_res <- lapply(split_up, spatial, y = iris[, 1:4])
exp_res <- as.data.frame(exp_res)
for (i in 1:ncol(exp_res)) {
expect_equal(depths[, i], exp_res[, i])
}
depth_tibble_un <-
tibble(
terms = "all_predictors()",
class = NA_character_,
id = ""
)
depth_tibble_tr <-
tibble(
terms = names(iris)[1:4],
class = rep("Species", 4),
id = ""
)
expect_equal(tidy(rec, 1), depth_tibble_un)
expect_equal(tidy(trained, 1), depth_tibble_tr)
})
test_that("alt args", {
skip_if_not_installed("ddalpha")
rec <- recipe(Species ~ ., data = iris) %>%
step_depth(all_predictors(),
class = "Species",
metric = "Mahalanobis",
options = list(mah.estimate = "MCD", mah.parMcd = .75)
)
trained <- prep(rec, training = iris, verbose = FALSE)
depths <- bake(trained, new_data = iris)
depths <- depths[, grepl("depth", names(depths))]
depths <- as.data.frame(depths)
split_up <- split(iris[, 1:4], iris$Species)
Mahalanobis <- function(x, y) {
ddalpha::depth.Mahalanobis(x = y, data = x, mah.estimate = "MCD", mah.parMcd = .75)
}
exp_res <- lapply(split_up, Mahalanobis, y = iris[, 1:4])
exp_res <- as.data.frame(exp_res)
head(exp_res)
head(depths)
for (i in 1:ncol(exp_res)) {
expect_equal(depths[, i], exp_res[, i])
}
})
test_that("prefix", {
skip_if_not_installed("ddalpha")
rec <- recipe(Species ~ ., data = iris) %>%
step_depth(all_predictors(),
class = "Species",
metric = "spatial", prefix = "spatial_"
)
trained <- prep(rec, training = iris, verbose = FALSE)
dists <- bake(trained, new_data = iris)
expect_false(any(grepl("depth_", names(dists))))
expect_true(any(grepl("spatial_", names(dists))))
})
# Infrastructure ---------------------------------------------------------------
test_that("bake method errors when needed non-standard role columns are missing", {
skip_if_not_installed("ddalpha")
rec <- recipe(Species ~ ., data = iris) %>%
step_depth(starts_with("Sepal"), class = "Species", metric = "spatial") %>%
update_role(starts_with("Sepal"), new_role = "potato") %>%
update_role_requirements(role = "potato", bake = FALSE)
trained <- prep(rec, training = iris, verbose = FALSE)
expect_snapshot(error = TRUE, bake(trained, new_data = iris[, 2:5]))
})
test_that("empty printing", {
skip_if_not_installed("ddalpha")
rec <- recipe(Species ~ ., iris)
rec <- step_depth(rec, class = "Species")
expect_snapshot(rec)
rec <- prep(rec, iris)
expect_snapshot(rec)
})
test_that("empty selection prep/bake is a no-op", {
skip_if_not_installed("ddalpha")
rec1 <- recipe(Species ~ ., iris)
rec2 <- step_depth(rec1, class = "Species")
rec1 <- prep(rec1, iris)
rec2 <- prep(rec2, iris)
baked1 <- bake(rec1, iris)
baked2 <- bake(rec2, iris)
expect_identical(baked1, baked2)
})
test_that("empty selection tidy method works", {
skip_if_not_installed("ddalpha")
rec <- recipe(Species ~ ., iris)
rec <- step_depth(rec, class = "Species")
expect <- tibble(terms = character(), class = character(), id = character())
expect_identical(tidy(rec, number = 1), expect)
rec <- prep(rec, iris)
expect_identical(tidy(rec, number = 1), expect)
})
test_that("keep_original_cols works", {
skip_if_not_installed("ddalpha")
new_names <- c("Species", "depth_setosa", "depth_versicolor", "depth_virginica")
rec <- recipe(Species ~ ., iris) %>%
step_depth(all_predictors(), class = "Species", keep_original_cols = FALSE)
rec <- prep(rec)
res <- bake(rec, new_data = NULL)
expect_equal(
colnames(res),
new_names
)
rec <- recipe(Species ~ ., iris) %>%
step_depth(all_predictors(), class = "Species", keep_original_cols = TRUE)
rec <- prep(rec)
res <- bake(rec, new_data = NULL)
expect_equal(
colnames(res),
unique(c(names(iris), new_names))
)
})
test_that("keep_original_cols - can prep recipes with it missing", {
skip_if_not_installed("ddalpha")
rec <- recipe(Species ~ ., iris) %>%
step_depth(all_predictors(), class = "Species")
rec$steps[[1]]$keep_original_cols <- NULL
expect_snapshot(
rec <- prep(rec)
)
expect_no_error(
bake(rec, new_data = iris)
)
})
test_that("printing", {
skip_if_not_installed("ddalpha")
rec <- recipe(Species ~ ., data = iris) %>%
step_depth(all_predictors(), class = "Species", metric = "spatial")
expect_snapshot(print(rec))
expect_snapshot(prep(rec))
})
test_that("bad args", {
skip_if_not_installed("ddalpha")
expect_snapshot(
recipe(Species ~ ., data = iris) %>%
step_depth(all_numeric_predictors(), class = "Species",
metric = "circular") %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(Species ~ ., data = iris) %>%
step_depth(all_numeric_predictors(), class = "Species",
prefix = 0L) %>%
prep(),
error = TRUE
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.