library(testthat)
library(recipes)
skip_if_not_installed("modeldata")
data(biomass, package = "modeldata")
biomass$fac <- factor(sample(letters[1:2], size = nrow(biomass), replace = TRUE))
rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur + fac,
data = biomass
)
test_that("imputation models", {
imputed <- rec %>%
step_impute_bag(carbon, fac,
impute_with = imp_vars(hydrogen, oxygen),
seed_val = 12, trees = 5
)
imputed_trained <- prep(imputed, training = biomass, verbose = FALSE)
expect_equal(length(imputed_trained$steps[[1]]$models[["carbon"]]$mtrees), 5)
## make sure we get the same trees given the same random samples
carb_samps <- lapply(
imputed_trained$steps[[1]]$models[["carbon"]]$mtrees,
function(x) x$bindx
)
for (i in seq_along(carb_samps)) {
carb_data <- biomass[carb_samps[[i]], c("carbon", "hydrogen", "oxygen")]
carb_mod <- rpart::rpart(carbon ~ .,
data = carb_data,
control = rpart::rpart.control(xval = 0)
)
expect_equal(
carb_mod$splits,
imputed_trained$steps[[1]]$models[["carbon"]]$mtrees[[i]]$btree$splits
)
}
fac_samps <- lapply(
imputed_trained$steps[[1]]$models[[1]]$mtrees,
function(x) x$bindx
)
fac_ctrl <- imputed_trained$steps[[1]]$models[["fac"]]$mtrees[[1]]$btree$control
## make sure we get the same trees given the same random samples
for (i in seq_along(fac_samps)) {
fac_data <- biomass[fac_samps[[i]], c("fac", "hydrogen", "oxygen")]
fac_mod <- rpart::rpart(fac ~ ., data = fac_data, control = fac_ctrl)
expect_equal(
fac_mod$splits,
imputed_trained$steps[[1]]$models[["fac"]]$mtrees[[i]]$btree$splits
)
}
imp_tibble_un <-
tibble(
terms = c("carbon", "fac"),
model = rep(list(NULL), 2),
id = imputed_trained$steps[[1]]$id
)
imp_tibble_tr <-
tibble(
terms = c("carbon", "fac"),
model = unname(imputed_trained$steps[[1]]$models),
id = imputed_trained$steps[[1]]$id
)
expect_equal(as.data.frame(tidy(imputed, 1)), as.data.frame(imp_tibble_un))
expect_equal(tidy(imputed_trained, 1)$terms, imp_tibble_tr$terms)
expect_equal(tidy(imputed_trained, 1)$model, imp_tibble_tr$model)
})
test_that("All NA values", {
imputed <- rec %>%
step_impute_bag(carbon, fac,
impute_with = imp_vars(hydrogen, oxygen),
seed_val = 12, trees = 5
) %>%
prep(biomass)
imputed_te <- bake(imputed, biomass %>% mutate(carbon = NA))
expect_equal(sum(is.na(imputed_te$carbon)), 0)
})
test_that("tunable", {
rec <-
recipe(~., data = iris) %>%
step_impute_bag(all_predictors(), impute_with = imp_vars(all_predictors()))
rec_param <- tunable.step_impute_bag(rec$steps[[1]])
expect_equal(rec_param$name, c("trees"))
expect_true(all(rec_param$source == "recipe"))
expect_true(is.list(rec_param$call_info))
expect_equal(nrow(rec_param), 1)
expect_equal(
names(rec_param),
c("name", "call_info", "source", "component", "component_id")
)
})
test_that("non-factor imputation", {
data(scat, package = "modeldata")
scat$Location <- as.character(scat$Location)
scat$Location[1] <- NA
rec <-
recipe(Species ~ ., data = scat) %>%
step_impute_bag(Location, impute_with = imp_vars(all_predictors())) %>%
prep(strings_as_factors = FALSE)
expect_true(is.character(bake(rec, NULL, Location)[[1]]))
})
test_that("impute_with errors with nothing selected", {
expect_snapshot(
error = TRUE,
recipe(~., data = mtcars) %>%
step_impute_bag(all_predictors(), impute_with = NULL) %>%
prep()
)
})
test_that("impute_with errors with nothing selected", {
mtcars[, 1:11] <- NA_real_
expect_snapshot(
tmp <- recipe(~., data = mtcars) %>%
step_impute_bag(mpg, disp, vs) %>%
prep()
)
})
# Infrastructure ---------------------------------------------------------------
test_that("bake method errors when needed non-standard role columns are missing", {
imputed <- rec %>%
step_impute_bag(carbon, fac,
impute_with = imp_vars(hydrogen, oxygen),
seed_val = 12, trees = 5
) %>%
update_role(carbon, fac, new_role = "potato") %>%
update_role_requirements(role = "potato", bake = FALSE)
imputed_trained <- prep(imputed, training = biomass, verbose = FALSE)
expect_snapshot(
error = TRUE,
bake(imputed_trained, new_data = biomass[, c(-3, -9)])
)
})
test_that("empty printing", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_impute_bag(rec)
expect_snapshot(rec)
rec <- prep(rec, mtcars)
expect_snapshot(rec)
})
test_that("empty selection prep/bake is a no-op", {
rec1 <- recipe(mpg ~ ., mtcars)
rec2 <- step_impute_bag(rec1)
rec1 <- prep(rec1, mtcars)
rec2 <- prep(rec2, mtcars)
baked1 <- bake(rec1, mtcars)
baked2 <- bake(rec2, mtcars)
expect_identical(baked1, baked2)
})
test_that("empty selection tidy method works", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_impute_bag(rec)
expect <- tibble(terms = character(), model = list(), id = character())
expect_identical(tidy(rec, number = 1), expect)
rec <- prep(rec, mtcars)
expect_identical(tidy(rec, number = 1), expect)
})
test_that("printing", {
rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur + fac,
data = biomass) %>%
step_impute_bag(carbon, impute_with = imp_vars(hydrogen))
expect_snapshot(print(rec))
expect_snapshot(prep(rec))
})
test_that("tunable is setup to work with extract_parameter_set_dials", {
skip_if_not_installed("dials")
rec <- recipe(~., data = mtcars) %>%
step_impute_bag(
all_predictors(),
trees = hardhat::tune()
)
params <- extract_parameter_set_dials(rec)
expect_s3_class(params, "parameters")
expect_identical(nrow(params), 1L)
})
test_that("bad args", {
expect_snapshot(
recipe(~., data = mtcars) %>%
step_impute_bag(
all_predictors(),
trees = -1
) %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(~., data = mtcars) %>%
step_impute_bag(
all_predictors(),
seed_val = 1:4
) %>%
prep(),
error = TRUE
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.