library(testthat)
library(recipes)
set.seed(131)
tr_dat <- matrix(rnorm(100 * 6), ncol = 6)
te_dat <- matrix(rnorm(20 * 6), ncol = 6)
colnames(tr_dat) <- paste0("X", 1:6)
colnames(te_dat) <- paste0("X", 1:6)
rec <- recipe(X1 ~ ., data = tr_dat)
test_that("correct kernel PCA values", {
skip_if_not_installed("kernlab")
kpca_rec <- rec %>%
step_kpca_poly(X2, X3, X4, X5, X6, id = "", degree = 3, scale_factor = .1)
kpca_trained <- prep(kpca_rec, training = tr_dat, verbose = FALSE)
pca_pred <- bake(kpca_trained, new_data = te_dat, all_predictors())
pca_pred <- as.matrix(pca_pred)
pca_exp <- kernlab::kpca(as.matrix(tr_dat[, -1]),
kernel = "polydot",
kpar = list(degree = 3, scale = .1)
)
pca_pred_exp <- kernlab::predict(pca_exp, te_dat[, -1])[, 1:kpca_trained$steps[[1]]$num_comp]
colnames(pca_pred_exp) <- paste0("kPC", 1:kpca_trained$steps[[1]]$num_comp)
rownames(pca_pred) <- NULL
rownames(pca_pred_exp) <- NULL
expect_equal(pca_pred, pca_pred_exp)
kpca_tibble <-
tibble(terms = c("X2", "X3", "X4", "X5", "X6"), id = "")
expect_equal(tidy(kpca_rec, 1), kpca_tibble)
expect_equal(tidy(kpca_trained, 1), kpca_tibble)
})
test_that("No kPCA comps", {
pca_extract <- rec %>%
step_kpca_poly(X2, X3, X4, X5, X6, num_comp = 0, id = "") %>%
prep()
expect_equal(
names(bake(pca_extract, new_data = NULL)),
paste0("X", c(2:6, 1))
)
expect_null(pca_extract$steps[[1]]$res)
expect_equal(
tidy(pca_extract, 1),
tibble::tibble(terms = paste0("X", 2:6), id = "")
)
expect_snapshot(pca_extract)
})
test_that("check_name() is used", {
skip_if_not_installed("kernlab")
dat <- dplyr::as_tibble(tr_dat)
dat$kPC1 <- dat$X1
rec <- recipe(~ ., data = dat) %>%
step_kpca_poly(X2, X3, X4, X5, X6)
expect_snapshot(
error = TRUE,
prep(rec, training = dat)
)
})
test_that("tunable", {
rec <-
recipe(~., data = iris) %>%
step_kpca_poly(all_predictors())
rec_param <- tunable.step_kpca_poly(rec$steps[[1]])
expect_equal(rec_param$name, c("num_comp", "degree", "scale_factor", "offset"))
expect_true(all(rec_param$source == "recipe"))
expect_true(is.list(rec_param$call_info))
expect_equal(nrow(rec_param), 4)
expect_equal(
names(rec_param),
c("name", "call_info", "source", "component", "component_id")
)
})
test_that("Do nothing for num_comps = 0 and keep_original_cols = FALSE (#1152)", {
rec <- recipe(~ ., data = mtcars) %>%
step_kpca_poly(all_predictors(), num_comp = 0, keep_original_cols = FALSE) %>%
prep()
res <- bake(rec, new_data = NULL)
expect_identical(res, tibble::as_tibble(mtcars))
})
test_that("rethrows error correctly from implementation", {
skip_if_not_installed("kernlab")
local_mocked_bindings(
.package = "kernlab",
kpca = function(...) {
cli::cli_abort("mocked error")
}
)
expect_snapshot(
error = TRUE,
recipe(~ ., data = mtcars) %>%
step_kpca_poly(all_predictors()) %>%
prep()
)
})
# Infrastructure ---------------------------------------------------------------
test_that("bake method errors when needed non-standard role columns are missing", {
skip_if_not_installed("kernlab")
kpca_rec <- rec %>%
step_kpca_poly(X2, X3, X4, X5, X6, degree = 3, scale_factor = .1) %>%
update_role(X2, X3, X4, X5, X6, new_role = "potato") %>%
update_role_requirements(role = "potato", bake = FALSE)
kpca_trained <- prep(kpca_rec, training = tr_dat, verbose = FALSE)
expect_snapshot(error = TRUE, bake(kpca_trained, new_data = te_dat[, 1:3]))
})
test_that("empty printing", {
skip_if_not_installed("kernlab")
rec <- recipe(mpg ~ ., mtcars)
rec <- step_kpca_poly(rec)
expect_snapshot(rec)
rec <- prep(rec, mtcars)
expect_snapshot(rec)
})
test_that("empty selection prep/bake is a no-op", {
skip_if_not_installed("kernlab")
rec1 <- recipe(mpg ~ ., mtcars)
rec2 <- step_kpca_poly(rec1)
rec1 <- prep(rec1, mtcars)
rec2 <- prep(rec2, mtcars)
baked1 <- bake(rec1, mtcars)
baked2 <- bake(rec2, mtcars)
expect_identical(baked1, baked2)
})
test_that("empty selection tidy method works", {
skip_if_not_installed("kernlab")
rec <- recipe(mpg ~ ., mtcars)
rec <- step_kpca_poly(rec)
expect <- tibble(terms = character(), id = character())
expect_identical(tidy(rec, number = 1), expect)
rec <- prep(rec, mtcars)
expect_identical(tidy(rec, number = 1), expect)
})
test_that("keep_original_cols works", {
skip_if_not_installed("kernlab")
new_names <- paste0("kPC", 1:5)
rec <- recipe(~ ., tr_dat) %>%
step_kpca_poly(all_predictors(), keep_original_cols = FALSE)
rec <- prep(rec)
res <- bake(rec, new_data = NULL)
expect_equal(
colnames(res),
new_names
)
rec <- recipe(~ ., tr_dat) %>%
step_kpca_poly(all_predictors(), keep_original_cols = TRUE)
rec <- prep(rec)
res <- bake(rec, new_data = NULL)
expect_equal(
colnames(res),
c(colnames(tr_dat), new_names)
)
})
test_that("keep_original_cols - can prep recipes with it missing", {
skip_if_not_installed("kernlab")
rec <- recipe(~ ., tr_dat) %>%
step_kpca_poly(all_predictors())
rec$steps[[1]]$keep_original_cols <- NULL
expect_snapshot(
rec <- prep(rec)
)
expect_no_error(
bake(rec, new_data = tr_dat)
)
})
test_that("printing", {
skip_if_not_installed("kernlab")
kpca_rec <- recipe(X1 ~ ., data = tr_dat) %>%
step_kpca_poly(X2, X3, X4, X5, X6)
expect_snapshot(print(rec))
expect_snapshot(prep(rec))
})
test_that("tunable is setup to work with extract_parameter_set_dials", {
skip_if_not_installed("dials")
rec <- recipe(~., data = mtcars) %>%
step_kpca_poly(
all_predictors(),
num_comp = hardhat::tune(),
degree = hardhat::tune(),
scale_factor = hardhat::tune(),
offset = hardhat::tune()
)
params <- extract_parameter_set_dials(rec)
expect_s3_class(params, "parameters")
expect_identical(nrow(params), 4L)
})
test_that("bad args", {
skip_if_not_installed("kernlab")
expect_snapshot(
recipe(~ ., data = tr_dat) %>%
step_kpca_poly(all_numeric_predictors(), num_comp = -1) %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(~ ., data = tr_dat) %>%
step_kpca_poly(all_numeric_predictors(), degree = 1.1) %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(~ ., data = tr_dat) %>%
step_kpca_poly(all_numeric_predictors(), scale_factor = -1.1) %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(~ ., data = tr_dat) %>%
step_kpca_poly(all_numeric_predictors(), offset = "a") %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(~ ., data = tr_dat) %>%
step_kpca_poly(all_numeric_predictors(), prefix = 1) %>%
prep(),
error = TRUE
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.