R/AGESEX.R

Defines functions ageSexAccuracyDasGupta ageSexAccuracy sexRatioScore ageRatioScore

Documented in ageRatioScore ageSexAccuracy ageSexAccuracyDasGupta sexRatioScore

# Author: tim
###############################################################################

#' Calculate the PAS age ratio score
#' @description A single ratio is defined as the 100 times twice the size of an age group
#' to its neighboring two age groups. Under uniformity these would all be 100. The average
#' absolute deviation from 100 defines this index. This comes from the PAS spreadsheet called AGESEX

#' @param Value numeric. A vector of demographic counts in 5-year age groups.
#' @param Age numeric. A vector of ages corresponding to the lower integer bound of the counts.
#' @param ageMin integer. The lowest age included in calculations. Default 0.
#' @param ageMax integer. The upper age bound used for calculations. Default \code{max(Age)}.
#' @param method character. Either \code{"UN"} (default), \code{"Zelnick"}, or \code{"Ramachandran"}
#' @param OAG logical. Whether or not the top age group is open. Default \code{TRUE}.

#' @details Age groups must be of equal intervals. Five year age groups are assumed.
#'  It is also assumed that the final age group is open, unless \code{ageMax < max(Age)}.
#'  Setting \code{OAG = FALSE} will override this and potentially include \code{max(Age)} in calculations.
#'  The method argument determines the weighting of numerators and denominators, where the UN method puts
#' twice the numerator over the sum of the adjacent ages classes, Zelnik does thrice the
#' numerator over the sum of the whole range from the next lowest to the next highest age, and
#' Ramachandran does four times the numerator over the same sum, but with the central age
#' double-counted in the numerator.

#' @return The value of the index.
#'
#' @references
#' \insertRef{accuracyun1952}{DemoTools}
#' \insertRef{ramachandran1967}{DemoTools}
#' \insertRef{PAS}{DemoTools}
#' @export
#' @examples
#' # data from PAS spreadsheet AGESEX.xlsx
#' Males   <- c(4677000,4135000,3825000,3647000,3247000,2802000,2409000,2212000,
#' 		1786000,1505000,1390000,984000,745000,537000,346000,335000)
#' Females <- c(4544000,4042000,3735000,3647000,3309000,2793000,2353000,2112000,
#' 		1691000,1409000,1241000,887000,697000,525000,348000,366000)
#' Age     <- seq(0, 75, by = 5)
#'
#' ageRatioScore(Males, Age, ageMax = 75)    # 3.9, matches PAS
#' ageRatioScore(Females, Age, ageMax = 75)  # 3.66 matches PAS
#' ageRatioScore(Females, Age, ageMax = 75, method = "Ramachandran") # 1.8
#' ageRatioScore(Females, Age, ageMax = 75, method = "Zelnick")      # 2.4


ageRatioScore       <-
  function(Value,
           Age,
           ageMin = 0,
           ageMax = max(Age),
           method = "UN",
           OAG = TRUE) {
    stopifnot(length(Value) == length(Age))
    method          <- tolower(method)
    stopifnot(method %in% c("un", "zelnick", "ramachandran"))
    
    N               <- length(Value)
    if (OAG) {
      Age           <- Age[-N]
      Value         <- Value[-N]
      if (ageMax > max(Age)) {
        ageMax      <- max(Age)
      }
    }
    
    # cut down data if necessary
    keep            <- Age >= ageMin & Age <= ageMax
    Value           <- Value[keep]
    Age             <- Age[keep]
    
    # selectors for numerators and denominators
    numi            <- Age > ageMin & Age < max(Age)
    denomleft       <- shift.vector(numi,-1)
    denommiddle     <- numi
    denomright      <- shift.vector(numi, 1)
    
    # one difference between UN, Zelnick and Ramachandran methods is whether and how
    # much to add the numerator into the denominator, and also how much weight to give
    # to the numerator (2, 3, or 4 times)
    middlemult      <-
      ifelse(method == "un", 0, ifelse(method == "zelnick", 1, 2))
    nummult         <-
      ifelse(method == "un", 200, ifelse(method == "zelnick", 300, 400))
    
    numerator       <- nummult * Value[numi]
    denominator     <-
      Value[denomleft] + Value[denomright] + Value[denommiddle] * middlemult
    # ratio of each age to the age above and below it
    ageratio        <- numerator / denominator
    # absolute deviatios from uniformity
    absres          <- abs(ageratio - 100)
    # average absolute deviation
    sum(absres) / length(absres)
  }

#' Calculate the PAS sex ratio score
#' @description A single ratio is defined as males per 100 females.
#' Taking the first difference of the ratios over age would give 0s
#' if the ratio were constant. The average absolute difference over
#' age defines the index. This comes from the PAS spreadsheet called AGESEX.

#' @param Males numeric.  A vector of demographic counts in 5-year age groups for males.
#' @param Females numeric. A vector of demographic counts in 5-year age groups for females.
#' @param Age numeric. A vector of ages corresponding to the lower integer bound of the counts.
#' @param ageMin integer. The lowest age included in calculations. Default 0.
#' @param ageMax integer. The upper age bound used for calculations. Default \code{max(Age)}.
#' @param OAG logical. Whether or not the top age group is open. Default \code{TRUE}.
#' @details Age groups must be of equal intervals. Five year age groups are assumed.
#'  It is also assumed that the final age group is open, unless \code{ageMax < max(Age)}.

#' @return The value of the index.
#' @references
#' \insertRef{accuracyun1952}{DemoTools}
#' \insertRef{PAS}{DemoTools}
#' @export
#' @examples
#' Males   <- c(4677000,4135000,3825000,3647000,3247000,2802000,2409000,2212000,
#' 		1786000,1505000,1390000,984000,745000,537000,346000,335000)
#' Females <- c(4544000,4042000,3735000,3647000,3309000,2793000,2353000,2112000,
#' 		1691000,1409000,1241000,887000,697000,525000,348000,366000)
#' Age     <- seq(0, 75, by = 5)
#' sexRatioScore(Males, Females, Age)  # 2.2, matches PAS


sexRatioScore    <-
  function(Males,
           Females,
           Age,
           ageMin = 0,
           ageMax = max(Age),
           OAG = TRUE) {
    stopifnot(length(Males) == length(Age) &
                length(Males) == length(Females))
    
    # handle open age group
    N            <- length(Males)
    if (OAG) {
      Age        <- Age[-N]
      Males      <- Males[-N]
      Females    <- Females[-N]
      if (ageMax > max(Age)) {
        ageMax   <- max(Age)
      }
    }
    # now make
    keep         <- Age >= ageMin & Age <= ageMax
    Males        <- Males[keep]
    Females      <- Females[keep]
    
    ratio        <- Males / Females
    ratiodiff    <- 100 * diff(ratio)
    absdiff      <- abs(ratiodiff)
    sum(absdiff) / length(absdiff)
  }


#' Calculate an age-sex accuracy index
#' @description This index is a composite consisting in the sum of thrice the sex
#' ratio index plus the age ratio index for males and females. This function is therefore
#' a wrapper to \code{ageRatioScore()} and \code{sexRatioScore()}.

#' @param Males numeric.  A vector of demographic counts in 5-year age groups for males.
#' @param Females numeric. A vector of demographic counts in 5-year age groups for females.
#' @param Age numeric. A vector of ages corresponding to the lower integer bound of the counts.
#' @param ageMin integer. The lowest age included in calculations. Default 0.
#' @param ageMax integer. The upper age bound used for calculations. Default \code{max(Age)}.
#' @param method character. Either \code{"UN"} (default), \code{"Zelnick"}, or \code{"Ramachandran"},or \code{"das gupta"}.
#' @param OAG logical. Whether or not the top age group is open. Default \code{TRUE}.
#' @param adjust logical. Whether or not to adjust the measure when population size is under one million. Default \code{TRUE}.

#' @details Age groups must be of equal intervals. Five year age groups are assumed.
#' If the final element of \code{Males} and \code{Females} is the open age group,
#' then either make sure \code{ageMax} is lower than it, or leave \code{OAG} as \code{TRUE} so that it is properly removed for calculations.
#' The method argument is passed to \code{ageRatioScore()}, where it determines weightings of numerators and denominators,
#' except in the case of Das Gupta, where it's a different method entirely (see \code{ageSexAccuracyDasGupta()}.

#' @return The value of the index.
#' @references
#' \insertRef{accuracyun1952}{DemoTools}
#' \insertRef{dasgupta1955}{DemoTools}
#' \insertRef{PAS}{DemoTools}
#' @export
#' @examples
#' Males   <- c(4677000,4135000,3825000,3647000,3247000,2802000,2409000,2212000,
#' 		1786000,1505000,1390000,984000,745000,537000,346000,335000)
#' Females <- c(4544000,4042000,3735000,3647000,3309000,2793000,2353000,2112000,
#' 		1691000,1409000,1241000,887000,697000,525000,348000,366000)
#' Age     <- seq(0, 75, by = 5)
#' ageSexAccuracy(Males, Females, Age)    # 14.3, matches PAS
#' ageSexAccuracy(Males, Females, Age, ageMax = 75)
#' ageSexAccuracy(Males, Females, Age, ageMax = 75, adjust = FALSE)
#' ageSexAccuracy(Males, Females, Age, method = "Zelnick")
#' ageSexAccuracy(Males, Females, Age, method = "Ramachandran")
#' # Das Gupta not a comparable magnitude, FYI.
#' ageSexAccuracy(Males, Females, Age, method = "Das Gupta")
ageSexAccuracy <- function(Males,
                           Females,
                           Age,
                           ageMin = 0,
                           ageMax = max(Age),
                           method = "UN",
                           adjust =  TRUE,
                           OAG = TRUE) {
  method <- tolower(method)
  stopifnot(method %in% c("un", "zelnick", "ramachandran", "das gupta", "dasgupta"))
  
  # Das Gupta method treated differently,
  # since it prescribes all the details.
  if (method %in% c("das gupta", "dasgupta")) {
    ind <- ageSexAccuracyDasGupta(
      Males = Males,
      Females = Females,
      Age = Age,
      ageMin = ageMin,
      ageMax = ageMax,
      OAG = OAG
    )
    # early return in this case
    return(ind)
  }
  
  SR <- sexRatioScore(
    Males = Males,
    Females = Females,
    Age = Age,
    ageMin = ageMin,
    ageMax = ageMax,
    OAG = OAG
  )
  MA <- ageRatioScore(
    Value = Males,
    Age = Age,
    ageMin = ageMin,
    ageMax = ageMax,
    method = method,
    OAG = OAG
  )
  FA <- ageRatioScore(
    Value = Females,
    Age = Age,
    ageMin = ageMin,
    ageMax = ageMax,
    method = method,
    OAG = OAG
  )
  # calculate index:
  ind <- 3 * SR + MA + FA
  tot <- sum(Males) + sum(Females)
  if (adjust & tot < 1e6) {
    ind <- ind - 3500 / sqrt(tot) + 3.5
  }
  return(ind)
}

#' Calculate Das Gupta's (1995) age sex accuracy index
#' @description Given population counts in 5-year age groups for males and females, follow Das Gupta's steps
#'  to calculate a composite index of the quality of the age and sex structure for a given population.
#'
#' @param Males numeric.  A vector of demographic counts in 5-year age groups for males.
#' @param Females numeric. A vector of demographic counts in 5-year age groups for females.
#' @param Age numeric. A vector of ages corresponding to the lower integer bound of the counts.
#' @param ageMin integer. The lowest age included in calculations. Default 0.
#' @param ageMax integer. The upper age bound used for calculations. Default \code{max(Age)}.
#' @param OAG logical. Whether or not the top age group is open. Default \code{TRUE}.
#'
#' @references
#' \insertRef{dasgupta1955}{DemoTools}
#'
#' @details It is assumed that the terminal age group is open, in which case it is ignored.
#' Set \code{OAG = FALSE} if the top age is indeed a closed interval that you want included in calculations.
#' If \code{ageMax == max(Age)} and \code{OAG} is \code{TRUE}, then \code{ageMax} gets decremented one age class.
#'
#' @export
#' @examples
#' # data from table for South West Africa (1946) given in reference
#' Males   <- c(2365, 2320, 1859, 1554, 1758, 1534, 1404, 1324,
#'               1118, 872, 795, 745, 743, 574)
#' Females <- c(2244, 2248, 1773, 1594, 1616, 1510, 1478, 1320,
#'               1085, 858, 768, 726, 533, 282)
#' Age     <- seq(0, 65, by = 5)
#' ageSexAccuracyDasGupta(Males, Females, Age)
#' # this method is not on the same scale as the others, so don't directly compare.
#' ageSexAccuracy(Males, Females, Age, method = "das gupta")

ageSexAccuracyDasGupta <-
  function(Males,
           Females,
           Age,
           ageMin = 0,
           ageMax = max(Age),
           OAG = TRUE) {
    # handle open age group
    N            <- length(Males)
    if (OAG) {
      Age        <- Age[-N]
      Males      <- Males[-N]
      Females    <- Females[-N]
      if (ageMax > max(Age)) {
        ageMax   <- max(Age)
      }
    }
    # cut down data:
    keep         <- Age >= ageMin & Age <= ageMax
    Males        <- Males[keep]
    Females      <- Females[keep]
    # sex ratio pars
    Ri           <- Males / Females
    ratiodiff    <- 100 * diff(Ri)
    absdiff      <- abs(ratiodiff)
    
    N            <- length(Males)
    n            <- length(ratiodiff)
    
    d            <- sum(absdiff)
    
    #i           <- mean(d - absdiff)
    
    # rolling sums
    mm           <- Males[-1] + Males[-N]
    mf           <- Females[-1] + Females[-N]
    
    # ratios of first and terminal rolling sums
    ri           <- 100 * mm[1] / mf[1]
    rt           <- 100 * mm[n] / mf[n]
    
    # Das Gupta's sex ratio index
    i            <- (d - abs(ri - rt)) / n
    
    # --------------------------
    # Das Gupta's age ratio index
    
    Rmi          <- 200 * Males[-1] / mm
    Rfi          <- 200 * Females[-1] / mf
    
    # sum of absolute deviations from unity ratio
    Dm           <- sum(abs(Rmi - 100))
    Df           <- sum(abs(Rfi - 100))
    
    # ratio of highest to first rolling sum
    Rhm          <- 200 * max(Males) / mm[1]
    Rhf          <- 200 * max(Females) / mf[1]
    
    # ratio of last to first rolling sum
    Rtm          <- 200 * Males[N] / mm[1]
    Rtf          <- 200 * Females[N] / mf[1]
    
    # age ratio indices
    Im           <- Dm / (Rhm - 100 + Rhm - Rtm)
    If           <- Df / (Rhf - 100 + Rhf - Rtf)
    
    # calculate the composite index
    i * Im * If
  }
timriffe/DemoTools documentation built on Oct. 14, 2024, 12:53 p.m.